Supplementary Material (ESI) for Chemical Communications

A theoretical study of the L₃ pre-edge XAS in Cu(II) complexes

G. Mangione,^a M. Sambi,^a M. V. Nardi^{b,c} and M. Casarin*,^a

Supporting Information

Computational Details

Numerical experiments have been run by employing the latest version of the Amsterdam Density Functional (ADF) package.¹ SO-ZORA TDDFT-TDA calculations have been carried out by using all-electron QZ4P ZORA basis sets for all the atoms.² The adiabatic local density approximation has been employed to approximate the XC kernel,^{3,4} while for the XC potential applied in the self-consistent field calculations, the LB94 approximate functional with the ground state electronic configuration has been adopted.⁵ Scaled ZORA orbital energies⁶ instead of the ZORA orbital energies in the TDDFT equations have been throughout employed to improve deep core excitation energies.

SO-ZORA TDDFT-TDA calculations pertaining to I have been run by assuming the same geometrical parameters adopted by Gewirth *et al.*,⁷ while the plastocyanin blue copper active site has been modeled by using the same cluster ([Cu(S(CH₃)₂)(SCH₃)(NH₃)₂]⁺) proposed by Solomon and coworkers in ref. 8. Two distinct sets of calculations have been run on it. In the former set, the SO-ZORA TDDFT-TDA Cu 2p *f* distribution has been obtained by using Cartesian coordinates reported in Table I of ref. 8 without any optimization. Differently from that, the *f* distribution pertaining to the latter set has been attained for optimized coordinates evaluated by running non-relativistic spin-unrestricted calculations with generalized gradient corrections self-consistently included through the Becke-Perdew formula,⁹ by adopting a TZP Slater-type basis set for all the atoms and by maintaining frozen the $(1s-2p)^{Cu}$, $(1s-2p)^{S}$, $1s^{C}$ and $1s^{N}$ cores throughout the calculations. Both sets of numerical experiments have been run by assuming a C_S symmetry. Non-Optimized- and Optimized-Structures (NOS and OS, respectively) are quite different. In particular, the OS Cu(II) ion lies at 1.114 Å above the plane defined by the N and S_{cys} species (the NOS Cu(II) ion is almost coplanar with N and S_{cys} atoms, lying 0.349 Å above the corresponding plane); moreover, the long Cu–S_{met} bond shortens from 2.903 to 2.547 Å, while the S_{cys}–Cu–S_{met} (N–Cu–N) angle widens from 110° (96°) to 124° (101°) on passing from NOS to OS.

As far as the *f* distribution of **II** is concerned, it has been evaluated by using the geometrical parameters optimized in ref. 10.

The energy difference between Cu $2p_{3/2}$ and $2p_{1/2}$ spinors should be large enough (~20 eV)¹⁰ to avoid, in transitions starting from them, any coupling with each other; nevertheless, the whole Cu $2p_{3/2}/2p_{1/2}$ set has been considered as initial state. No coupling has been revealed.

- 1 Amsterdam Density Functional (ADF) version 2013.01. http://www.scm.com.
- 2 E. van Lenthe and E. J. Baerends, J. Comput. Chem. 2003, 24, 1142.
- 3 (a) G. Fronzoni, M. Stener, P. Decleva, F. Wang, T. Ziegler, E. van Lenthe and E. J. Baerends, *Chem. Phys. Lett.* 2005, 416, 56; (b) M. Casarin, P. Finetti, A. Vittadini, F. Wang and T. Ziegler, *J. Phys. Chem. A* 2007, 111, 5270.
- 4 E. K. U. Gross and W. Kohn, Adv. Quantum Chem. 1990, 21, 255.
- 5 R. van Leeuwen and E. J. Baerends, *Phys. Rev. A* 1994, **49**, 2421.
- 6 J. H. van Lenthe, S. Faas and J. G. Snijders, Chem. Phys. Lett. 2000, 328, 107.
- 7 A. A. Gewirth, S. L. Cohen, H. J. Schugar and E. I. Solomon, *Inorg. Chem.* 1987, 26, 1133.
- 8 K. W. Penfield, A. A. Gewirth and E. I. Solomon, J. Am. Chem. Soc. 1985, 107, 4519.
- 9 (a) A. D. Becke, *Phys. Rev. A* 1988, **38**, 3098; (b) J. P. Perdew, *Phys. Rev. B* 1986, **33**, 8822.
- 10 M. V. Nardi, F. Detto, L. Aversa, R. Verucchi, G. Salviati, S. Iannotta and M. Casarin, Phys. Chem. Chem. Phys. 2013, 15, 12864-12881.

Cartesian coordinates (Å) of IIIOS

Element	x	У	Ζ
Cu	0.034133	-0.243602	0.000000
S	-0.380615	-2.756510	0.000000
S	2.013025	0.666055	0.000000
С	3.326612	-0.607373	0.000000
Н	2.926252	-1.624599	0.000000
Н	3.952073	-0.440640	0.887399
Ν	-1.250947	0.168086	1.636259
Н	-0.754157	0.027118	2.520582
Н	-1.566243	1.142648	1.648226
Н	-2.094872	-0.411186	1.681437
С	0.414827	-3.621964	1.404784
Н	-0.017191	-3.216197	2.326835
Н	0.179195	-4.691098	1.343337
Н	1.499399	-3.466577	1.405506
Н	3.952073	-0.440640	-0.887399
Ν	-1.250947	0.168086	-1.636259
Н	-0.754157	0.027118	-2.520582
Н	-1.566243	1.142648	-1.648226
Н	-2.094872	-0.411186	-1.681437
С	0.414827	-3.621964	-1.404784
Н	-0.017191	-3.216197	-2.326835
Н	0.179195	-4.691098	-1.343337
Н	1.499399	-3.466577	-1.405506