Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2014

Supplementary Information

Regulation of photoluminescence properties of graphene quantum dots via hydrothermal treatment

Peihui Luo,* Yu Qiu, Xiangfeng Guan and Linqin Jiang

College of Electronics and Information Science, Fujian Jiangxia University, Fuzhou

350108, People's Republic of China

Supplementary Figures

Fig. S1 TEM images of GQDs prepared from graphite powder before (a) and after(b) hydrothermal treatment. Inset: the corresponding size distribution.

Fig. S2 TEM images of the GQDs prepared from GO (a) and RGO (b). Inset: the corresponding size distribution.

Fig. S3 TEM images of the GQDs prepared from carbon fibers at 80 (a) and 120 °C(b). Inset: the corresponding size distribution.

Fig. S4 FTIR (a) and C 1s XPS spectra (b, c) of GQDs and HT-GQDs prepared from graphite powder at 100 °C.

Fig. S5 Raman spectra of GQDs and HT-GQDs prepared from graphite powder at

100 °C.

Fig. S6 UV-visible absorption spectra of various GQDs before (a) and after (b) hydrothermal treatment. (1-5) GQDs prepared from different carbonaceous materials or at different temperatures: carbon fibers at 80 °C (1); carbon fibers at 120 °C (2); GO at 100 °C (3); RGO at 100 °C (4); graphite powder at 100 °C (5).

Fig. S7 PL spectra of various GQDs before (a) and after (b) hydrothermal treatment.(1-5) GQDs prepared from different carbonaceous materials or at different

temperatures: carbon fibers at 80 °C (1); carbon fibers at 120 °C (2); GO at 100 °C (3); RGO at 100 °C (4); graphite powder at 100 °C (5).