Supporting Information

Theoretical Study of the Reactions of Hydroperoxy (HO₂) with Hydroxymethylperoxy (HOCH₂O₂) and Methoxymethylperoxy (CH₃OCH₂O₂)

Youxiang Shao, Hua Hou, and Baoshan Wang*

College of Chemistry and Molecular Sciences, Wuhan University, Wuhan, 430072, People's

Republic of China

INDEX

Table S1	2
Table S2	3
Table S3	4
Table S4	5
Table S5	18
Figure S1	24
Figure S2	25
Figure S3	26
Figure S4	27
Figure S5	28
Figure S6	29
Figure S7	30

Species	ZPE	$^{a}\Delta E_{1}$	$^{a}\Delta G_{1}$	$^{a}\Delta E_{2}$	$^{a}\Delta G_{2}$	$^{a}\Delta E_{3}$	$^{a}\Delta G_{3}$	Exptl. ^b
HO ₂ +HOCH ₂ O ₂ (<i>cis</i>)	39.37	0	0	0		0		
HO ₂ +HOCH ₂ O ₂ (<i>trans</i>)	39.13	1.68	-1.72	1.77	-1.63	1.71	-1.69	
³ O ₂ +HOCH ₂ OOH (A)	40.41	-34.54	-39.09	-38.59	-43.14	-38.74	-43.29	-40.3
$HOCHO_2 + H_2O_2$	38.46	16.93	10.83	14.13	8.03	14.09	7.99	
$CH_2O + {}^3O_2 + H_2O_2$	35.57	-20.25	-34.64	-23.16	-37.55	-22.81	-37.2	-21.4
$CH_2O + 2 HO_2$	34.35	13.56	-2.53	14.84	-1.25	15.47	-0.62	16.9
HCOOH + HO ₃ H	40.27	-67.9	-91.25	-74.21	-97.56	-75.87	-99.22	-75.1
$HCOOH + OH + HO_2$	35.41	-40.14	-54.86	-43.63	-58.35	-42.32	-57.04	-41.5
$HCOOH + H_2O + {}^1O_2$	36.94	-66.91	-80.04	-82.63	-95.76	-83.67	-96.8	-88.6
$HCOOH + H_2 + O_3$	32.12	-9.19	-21.49	-16.73	-29.03	-20.59	-32.89	-20.1
¹ O ₂ +HOCH ₂ OOH (A)	40.39	4.46	0.56	-8.78	-12.68	-10.41	-14.31	
$CH_2(OH)_2 + O_3$	40.29	-3.51	-9.24	-16.74	-22.47	-16.49	-22.22	
$CH_2O + H_2O + O_3$	34.55	2.82	-11.4	-10.87	-25.09	-12.99	-27.21	-13.6
$HOCH_2O + OH + {}^3O_2$	33.39	4.34	-13.15	0.92	-16.57	4.98	-12.51	3.8

Table S1. Zero-point energies (ZPE), relative energies (ΔE), and Gibbs free energies (ΔG) at 298.15 K for various product channels in the HO₂ + HOCH₂O₂ reaction.

^{*a*} Subscripts 1, 2, and 3 represent B3LYP/6-311G(d,p), CCSD(T)/CBS, and CBS-QB3 levels of theory, respectively. All energies are in kcal/mol.

^b Experimental enthalpies of formation (ref 38) for various specious are as follows (in kcal/mol): HO₂ (3.64), HOCH₂O₂ (-38.3), HOCH₂OOH (-75), H₂O₂ (-31), HCOOH (-88.7), H₂O (-57.1), OH (8.9), CH₂O (-25.1), HO₃H (-21.1), HO₃ (7.1), O₃ (33.9), ¹O₂ (22.5), HOCH₂O (-39.8), CH₂(OH)₂ (-93.5).

Table S2. Zero-point energies (ZPE), relative energies (ΔE), and Gibbs free energy (ΔG) at 298.15 K for various conformations of the HOCH₂O₄H adducts and the isomerization transition states with respect to the HO₂ + HOCH₂O₂ asymptote.

Species	ZPE	$^{a}\Delta E_{1}$	$^{a}\Delta G_{1}$	$^{a}\Delta E_{2}$	$^{a}\Delta G_{2}$	$^{a}\Delta E_{3}$	$^{a}\Delta G_{3}$
IM-S1A	41.94	-6.91	-1.54	-13.42	-8.05	-12.42	-7.05
IM-S1B	42.23	-8.76	-2.84	-14.72	-8.80	-13.71	-7.79
IM-S1C	42.24	-9.18	-3.31	-15.13	-9.26	-14.22	-8.35
IM-S1D	42.02	-7.24	-1.81	-14.11	-8.68	-13.09	-7.66
IM-S1E	42.14	-6.15	-0.45	-12.85	-7.15	-12.02	-6.32
IM-S1F	42.01	-6.88	-1.44	-12.86	-7.42	-11.96	-6.52
IM-S1G	42.16	-7.74	-2.32	-14.18	-8.76	-13.29	-7.87
IM-S1H	41.94	-5.91	-0.58	-12.65	-7.32	-11.51	-6.18
$TS (S1A \leftrightarrow S1B)$	41.66	-1.43	4.86	-7.88	-1.59	-10.93	-4.64
$TS (S1A \leftrightarrow S1D)$	41.30	-3.08	2.39	-10.17	-4.70	-12.42	-6.95
$\mathrm{TS}(\mathrm{S1A}{\leftrightarrow}\mathrm{S1H})$	42.08	-1.25	4.65	-6.90	-1.00	-4.56	1.34
$TS(S1B\leftrightarrowS1G)$	41.81	0.11	6.21	-5.63	0.47	-7.29	-1.19
$TS (S1C \leftrightarrow S1D)$	41.72	-4.22	1.83	-11.04	-4.99	-10.4	-4.35
$\mathrm{TS}(\mathrm{S1C}\leftrightarrow\mathrm{S1F})$	42.04	-1.75	4.33	-6.49	-0.41	-5.94	0.14
$TS (S1D \leftrightarrow S1E)$	41.89	-2.42	8.21	-3.53	7.10	-0.83	9.80
$TS(S1E\leftrightarrowS1F)$	41.15	-3.39	2.99	-9.15	-2.77	-12.01	-5.63
$\mathrm{TS}(\mathrm{S1F}\leftrightarrow\mathrm{S1G})$	41.39	-2.95	2.55	-9.67	-4.17	-8.75	-3.25
TS (S1G \leftrightarrow S1H)	41.70	-4.30	1.75	-11.19	-5.14	-10.51	-4.46

^{*a*} Subscripts 1, 2, and 3 represent B3LYP/6-311G(d,p), CCSD(T)/CBS, and CBS-QB3 levels of theory, respectively. All energies are in kcal/mol.

Species	ZPE	$^{a}\Delta E_{1}$	$^{a}\Delta G_{1}$	$^{a}\Delta E_{2}$	$^{a}\Delta G_{2}$	$^{a}\Delta E_{3}$	$^{a}\Delta G_{3}$
$HO_2 + CH_3OCH_2O_2$	56.81	0	0	0	0	0	0
IM-T1	58.30	-7.30	-1.91	-6.72	-1.33	-5.33	0.06
IM-T2	58.46	-7.78	-2.09	-7.97	-2.28	-6.29	-0.60
TS-T1	55.83	-6.66	-1.15	0.45	5.96	1.31	6.82
TS-T2	57.29	-6.64	-0.38	-4.22	2.04	-2.24	4.02
TS-T3	56.27	15.89	21.09	29.07	34.27	28.31	33.51
IM-S1	59.62	-8.60	-0.02	-12.08	-3.50	-13.24	-4.66
$TS-S1^b$	59.76	n/a	n/a	44.08	n/a	40.23	n/a
TS-S2	54.76	34.62	51.99	19.23	36.60	21.43	38.80
TS-S3	55.51	18.76	47.87	14.93	44.04	13.23	42.34
TS-S4	55.67	7.77	36.88	4.58	33.69	2.62	31.73
TS-S5	55.75	16.56	43.20	11.29	37.93	9.11	35.75
TS-S6	52.32	34.59	63.70	31.58	60.69	32.83	61.94
TS-S7	56.19	11.87	40.98	12.92	42.03	13.32	42.43
TS-S8	57.56	25.24	54.35	9.02	38.13	10.56	39.67
TS-S9	57.36	14.47	22.59	8.02	16.14	8.33	16.45
$CH_3OCH_2O + HO_3$	54.59	3.32	-1.03	5.48	1.13	5.50	1.15
$CH_3OCH_2O + HO + {}^3O_2$	51.19	2.99	-8.61	-1.33	-12.93	6.46	-5.14
$CH_3OCH_2OOH + {}^3O_2$	57.56	-33.58	-33.86	-38.55	-38.83	-36.16	-36.44
$CH_3OCHO + HO_3H$	57.33	-63.53	-84.85	-65.01	-86.33	-67.01	-88.33
$CH_3OCHO + HO_2 + OH$	52.47	-35.77	-48.47	-39.10	-51.80	-38.30	-51.00
$CH_3OCH_2OH + O_3$	57.68	-4.19	-7.32	-13.61	-16.74	-14.83	-17.96
$CH_3OCHO + H_2 + O_3$	49.18	-4.82	-15.09	-13.52	-23.79	-14.81	-25.08
$CH_3OH + CH_2O + O_3$	53.26	4.64	-8.59	-5.36	-18.59	-8.19	-21.42
$CH_3OCHO + H_2O + {}^1O_2$	54.00	-62.54	-73.65	-75.08	-86.19	-79.97	-91.08

Table S3. Zero-point energies (ZPE), relative energies (ΔE), and Gibbs free energies (ΔG) at 298.15 K for various species involved in the HO₂ + CH₃OCH₂O₂ reaction.

^{*a*} Subscripts 1, 2, and 3 represent B3LYP/6-311G(d,p), CCSD(T)/cc-pVDZ, and CBS-QB3 levels of theory, respectively. All energies are in kcal/mol.

^b Geometries and ZPE were calculated at the CISD/cc-pVDZ level of theory.

Table S4. Cartesian coordinates (in Ångstroms) of various stationary points optimized at the B3LYP/6-311G(d,p) level for the $HO_2 + HOCH_2O_2$ reaction.

HOCH ₂ O ₂	, cis		
С	-0.616567	0.569924	0.238086
0	0.759162	0.536336	-0.294575
0	1.366966	-0.554776	0.127703
0	-1.349965	-0.511005	-0.181482
Н	-0.504379	0.638338	1.325094
Н	-1.039024	1.476603	-0.190253
Н	-0.966499	-1.298926	0.223479

 $HOCH_2O_2$, trans

2			
С	-0.496898	0.507707	-0.045751
0	0.607323	-0.466410	-0.199112
0	1.759253	0.072663	0.142203
0	-1.682853	-0.181749	-0.002149
Н	-0.251467	1.082898	0.851433
Н	-0.496557	1.132770	-0.938239
Н	-1.740375	-0.657937	0.833771

IM-T1:

0	-1.126731	1.016451	-0.099193
С	-1.129109	-0.420250	0.337235
0	0.076791	1.534715	-0.132339
Н	1.626722	0.638939	0.154325
0	2.435789	0.069146	0.191191
0	2.036854	-1.119478	-0.239183
0	-2.326279	-0.962357	-0.034517
Н	-1.075624	-0.396231	1.425237
Н	-0.238728	-0.866468	-0.113570
Н	-2.309115	-1.162549	-0.977073

TS-T1	•
-------	---

O-0.4468740.1625880.793231C-1.337170-0.7145850.003142O-0.0422231.1810440.035978H1.4513950.842783-0.146610O2.3193130.323680-0.297718	TS-T1:			
C-1.337170-0.7145850.003142O-0.0422231.1810440.035978H1.4513950.842783-0.146610O2.3193130.323680-0.297718	0	-0.446874	0.162588	0.793231
O-0.0422231.1810440.035978H1.4513950.842783-0.146610O2.3193130.323680-0.297718	С	-1.337170	-0.714585	0.003142
H1.4513950.842783-0.146610O2.3193130.323680-0.297718	0	-0.042223	1.181044	0.035978
0 2.319313 0.323680 -0.297718	Н	1.451395	0.842783	-0.146610
	0	2.319313	0.323680	-0.297718

0	2.055228	-0.921185	-0.016702
Н	-1.574424	-1.517090	0.698020
0	-2.491775	-0.067765	-0.353580
Н	-0.729846	-1.057665	-0.837832
Н	-2.273456	0.592588	-1.022105

IM-T2:

±11 ±2•			
0	0.624665	-0.214540	-0.324145
С	2.028845	-0.292526	0.179403
0	-0.128185	-1.124242	0.250200
Н	-1.835484	-0.634702	-0.177579
0	-2.711254	-0.200614	-0.307682
0	-2.593165	0.981675	0.286838
Н	2.493411	-1.130811	-0.337817
0	2.668796	0.858522	-0.177766
Н	1.931040	-0.473979	1.252752
Н	2.351109	1.588242	0.366673

TS-T	2:		
0	-0.692904	0.448251	-0.600351
С	-1.936627	0.580987	0.166389
0	0.050081	-0.530568	-0.056742
Н	1.344814	-0.028878	0.237377
0	2.296430	0.326329	0.512763
0	3.142307	-0.254828	-0.272729
Н	-2.448566	1.403984	-0.328719
0	-2.716224	-0.545177	0.082876
Н	-1.630661	0.836334	1.186271
Н	-2.283347	-1.249426	0.580199

IM-T	3:		
0	-1.982213	-0.681643	0.042418
0	-2.051143	0.637016	0.113219
Н	-1.116505	0.958705	-0.010509
0	0.549313	1.449879	-0.218761
0	1.625391	0.727663	-0.031783
С	1.318567	-0.665938	0.464298
Н	2.324877	-1.050288	0.622517
Н	0.776742	-0.509418	1.402445
0	0.659460	-1.401460	-0.459876

Н	-0.302980	-1.255020	-0.361970

-	
ma ma	-
1 - 5 = 1 - 3	•
TO TO	•

0	1.787602	0.917895	0.108525
0	1.995615	-0.327477	-0.116075
Н	1.044116	-0.880317	0.014608
0	-0.085193	-1.490324	0.219693
0	-1.098790	-0.891906	-0.431727
С	-1.578315	0.296509	0.306433
Н	-2.649387	0.300674	0.108396
Н	-1.343358	0.092777	1.355001
0	-1.035285	1.445030	-0.199627
Н	-0.093073	1.482061	0.037085

TS-T4:

С	-0.731850	0.748981	0.493808
0	-1.563281	-0.436872	0.275416
0	-0.929409	-1.388816	-0.389571
Н	-1.253836	1.336138	1.246679
Н	0.500643	0.245206	0.937636
Н	0.300239	0.968200	-1.074165
0	-0.431257	1.432606	-0.615900
0	1.573339	-0.155239	0.859712
0	1.778334	-0.197962	-0.542480
Н	1.422239	-1.073163	-0.770414

TS-T5:			
С	-0.442958	0.480643	0.505639
0	-1.510117	-0.510973	0.647806
0	-1.962171	-0.857676	-0.545913
Н	-0.179746	0.819736	1.506086
Н	0.681718	-0.260224	0.068249
Н	-1.168197	1.083577	-1.115519
0	-0.761202	1.485952	-0.329135
0	1.619083	-0.804521	-0.254729
0	2.668988	0.058226	0.132656
Н	2.887320	0.504991	-0.698133
,			

IM-T4:

С	-1.196958	0.814100	0.442090
0	-1.827771	-0.393542	-0.007269
0	-1.021383	-1.451275	0.066625
Н	-1.943365	1.447684	0.907431
Н	2.051630	0.895384	0.681409
Н	0.286394	0.778474	-0.757656
0	-0.390697	1.418859	-0.434412
0	2.394363	0.001258	0.533469
0	1.570881	-0.440336	-0.576304
Н	0.983949	-1.085849	-0.140607

IM-T5	:		
С	-1.605035	-0.589208	0.279285
0	-1.633832	0.803843	-0.234127
0	-0.533762	1.442616	0.106040
0	-0.714002	-1.368702	-0.398579
Н	-1.397589	-0.489214	1.349154
Н	-2.618262	-0.937298	0.082490
Н	0.185108	-1.149029	-0.098060
0	1.782054	-0.389134	0.590834
0	2.405738	0.171983	-0.435491
Н	3.011379	0.825938	-0.038714

TS-T6:

15-10:			
С	-1.491788	-0.924216	0.209206
0	-1.620782	0.932055	-0.138103
0	-0.478185	1.446762	-0.034206
0	-0.438915	-1.324898	-0.376235
Н	-1.487812	-0.745007	1.287709
Н	-2.447794	-1.183723	-0.244117
Н	0.477915	-0.858454	0.091069
0	1.379770	-0.120492	0.615739
0	2.349581	0.013966	-0.362716
Н	2.876671	0.753340	-0.025740

TS-T7	
-------	--

TS-T7:			
С	-0.184010	0.425256	0.110156
Н	-0.203878	0.079580	1.128942
0	-0.180022	1.736870	-0.041157
Н	0.047652	-0.234408	-0.708324

0	-2.112786	-0.025602	-0.094495
0	-2.365263	-1.240140	0.059802
0	2.005129	0.127027	0.369407
0	2.473115	-0.942853	-0.349817
Н	2.683049	-1.608275	0.324719
Н	0.015856	1.969154	-0.956193

IM-T6:

TH IO	•		
С	-1.130486	0.893863	0.241124
0	-0.910076	-0.506420	-0.282110
0	-1.819321	-1.350404	0.157891
0	-0.182781	1.688995	-0.314783
Н	-2.121167	1.184515	-0.102078
Н	-1.084468	0.783595	1.328756
Н	0.687362	1.441000	0.048915
0	1.851378	-0.988527	-0.202999
Н	0.887543	-0.973988	-0.422796
0	2.112506	0.181569	0.354558

TS-T8	3:		
С	-0.508557	1.515642	0.235616
0	-1.060321	-0.302553	-0.338350
0	-2.099303	-0.918997	0.178882
0	0.650415	1.568647	-0.250817
Н	-1.305738	2.076301	-0.253164
Н	-0.678207	1.216846	1.274057
Н	1.334081	0.627684	0.059369
0	1.078519	-1.418217	-0.081183
Н	-0.066234	-0.941006	-0.294130
0	1.901620	-0.438090	0.216490

IM-S1C

111 5	10		
0	0.552774	-1.000317	-0.475552
С	1.599541	-0.214491	0.084920
0	-0.560233	-0.975865	0.476866
0	-1.623647	-0.330633	-0.132253
0	-1.460022	1.095149	0.012513
Н	-0.944238	1.301477	-0.785719
Н	1.774671	-0.542547	1.114664
Н	2.449208	-0.464181	-0.552248

0	1.386280	1.159676	-0.003549
Н	0.761907	1.408116	0.689581

TS-S1:			
0	1.109160	-0.798342	0.758357
С	1.704756	-0.289607	-0.263673
0	-0.645163	-0.429382	-0.276126
0	-1.916946	-0.501654	-0.234322
0	-2.534261	0.784912	0.178364
Н	-1.777367	1.201754	0.626832
Н	0.854541	-0.221872	-1.086006
0	2.265508	0.993919	-0.163955
Н	2.430404	-0.956764	-0.774013
Н	2.037494	1.318897	0.716679

TS-S2:			
0	0.967204	-1.217957	-0.310717
С	1.233779	-0.221283	0.395884
0	-1.178392	-1.073921	-0.311523
0	-1.249733	-0.150800	0.519758
0	-1.357762	1.293052	-0.149707
Н	-0.544924	1.275929	-0.695700
Н	0.100622	-0.009212	0.930833
Н	1.840193	-0.352421	1.312605
0	1.502692	0.992307	-0.283626
Н	1.729373	1.671957	0.363483

TS-S	3 :
------	-----

TS-S3:			
0	0.272556	-0.889632	0.714612
С	1.225397	0.094545	0.511806
0	-0.793539	-0.818752	-0.489587
0	-1.868476	-0.387254	-0.101708
0	-0.794974	1.482624	0.098910
Н	-0.942752	2.444740	0.060364
Н	0.536274	1.084264	0.549757
Н	1.925617	0.028673	1.350349
0	1.915331	0.070444	-0.677045
Н	1.281294	0.215613	-1.392761

0	0.789934	0.921650	0.590162
С	1.114511	-0.068835	-0.060722
0	-1.429213	1.076220	-0.115359
0	-1.487078	-0.090837	-0.573322
0	-1.545892	-1.093706	0.403233
Н	-0.473013	-1.276692	0.708852
Н	0.588327	-1.288351	0.714799
Н	0.436262	-0.440161	-0.867528
0	2.396057	-0.403569	-0.354236
Н	2.970897	0.140154	0.204384

TS-S5	:		
0	-0.495886	-0.532742	-0.618947
С	-1.694734	-0.524971	0.144989
0	0.387508	0.306568	0.005782
0	1.800000	-0.394277	0.566089
0	2.494258	0.370471	-0.240341
Н	1.268105	0.644749	-0.636092
0	-2.365737	0.664732	0.074603
Н	-2.293400	-1.295027	-0.340639
Н	-1.441401	-0.815405	1.170353
Н	-1.926050	1.297495	0.638956

TS-S6:

12-20:			
0	0.385198	-0.859901	-0.677177
С	1.319773	-0.562046	0.307248
0	-1.512644	-0.843122	0.099360
0	-1.424573	0.337274	0.559130
0	-0.900780	1.148466	-0.451770
Н	-0.227578	0.297766	-0.856443
Н	2.098411	-1.332462	0.269982
0	1.953788	0.671184	0.101792
Н	0.831723	-0.606790	1.297685
Н	1.370902	1.382548	0.394616

TS-	S7
-----	----

TS-S7	' :		
0	0.960899	-1.209386	-0.350294
С	1.355939	-0.318335	0.442126
0	-1.017279	-1.106202	-0.259980
0	-1.338934	-0.131419	0.480155

0	-1.303861	1.097629	-0.162090
Н	-0.015342	1.263978	-0.335505
0	1.109977	1.236501	-0.281539
Н	0.768595	-0.141490	1.361527
Н	2.441971	-0.248908	0.586187
Н	1.382724	1.939450	0.325017

TS-S8:

10 00	•		
0	0.300650	-1.372521	-0.320194
С	1.593010	-0.193784	0.279548
0	-0.850894	-1.029480	0.355369
0	-1.568200	-0.183890	-0.258568
0	-0.873252	1.558196	0.017810
Н	-1.124006	1.724685	0.938212
Н	1.326973	-0.339821	1.335499
Н	2.397598	-0.836720	-0.087183
0	1.438343	0.934705	-0.268731
Н	0.268196	1.358472	-0.069302

TS-S9:	0.054622		
0	0 054600		
	-0.034623	-1.129822	-0.397512
0	-1.687050	-0.613245	0.465400
Н	-1.756412	0.411429	0.151719
0	-0.789453	1.409040	-0.010538
0	0.163611	0.679356	-0.582854
С	1.262079	0.390670	0.408836
Н	1.914003	1.263085	0.381926
Н	0.733308	0.292612	1.360681
0	1.942308	-0.702064	-0.022071
Н	1.338291	-1.457264	0.033251

TS-S10:

TO D	10.		
0	0.766312	0.593302	-0.391203
С	1.555920	-0.345005	0.408595
0	-0.343157	0.933457	0.293955
Н	-1.611964	0.544862	-0.645816
0	-1.895340	-0.381382	-0.394052
0	-3.015584	-0.347939	0.239706
Н	1.040276	-1.306476	0.384119
0	2.783484	-0.491385	-0.191724

Н	1.578423	0.065746	1.423195
Н	3.292025	0.317478	-0.066524

IM-S2:			
С	-1.129161	0.895140	0.241254
0	-0.909478	-0.507008	-0.276594
0	-1.827069	-1.346409	0.154465
0	-0.180275	1.687493	-0.316713
Н	-2.119356	1.185373	-0.103636
Н	-1.083897	0.788952	1.329365
Н	0.689524	1.439682	0.047933
0	1.852364	-0.990245	-0.202703
Н	0.888354	-0.975668	-0.421341
0	2.114501	0.180022	0.354064

TS-S11:

10 011.			
С	-0.497348	1.523179	0.239738
0	-1.057353	-0.300127	-0.310698
0	-2.121640	-0.911049	0.155843
0	0.655702	1.564188	-0.261162
Н	-1.297953	2.081957	-0.245713
Н	-0.656032	1.235633	1.283105
Н	1.339082	0.620886	0.047518
0	1.076765	-1.424906	-0.074389
Н	-0.065027	-0.948863	-0.272233
0	1.904529	-0.444191	0.209018

HOCH2OOH-A:

110 011	20011 11.		
0	-1.357649	-0.600551	-0.020301
С	-0.612532	0.550405	0.287346
Н	-1.656166	-0.528191	-0.933924
Н	-0.449893	0.533299	1.365604
Н	-1.105899	1.476803	-0.029949
0	0.618659	0.593386	-0.393503
0	1.466491	-0.436312	0.173237
Н	1.067138	-1.236525	-0.201261

HOCH2OOH-D:

C	0 525199	0 499093	-0 031820
C	0.525199	0.499093	-0.031020

0	-0.467806	-0.534265	-0.122059
0	-1.739194	0.099478	0.178844
0	1.758234	-0.132795	-0.039066
Н	0.485885	1.147160	-0.912453
Н	0.325101	1.077506	0.878763
Н	1.815818	-0.677510	0.754373
Н	-2.187872	-0.001063	-0.671509

SR1-TS1:

С	0.671334	-0.621619	0.535686
0	1.021728	0.703122	0.739359
0	1.009539	1.343419	-0.578479
Н	0.664020	-1.083885	1.523027
Н	-0.617925	-0.649223	0.091121
Н	1.431595	-0.853112	-1.183967
0	1.445069	-1.330224	-0.343273
0	-1.723020	-0.722548	-0.308639
0	-2.316605	0.519863	-0.004117
Н	1.806613	1.884419	-0.490444
Н	-2.805991	0.322454	0.807335

SR1-TS2:

С	-0.395236	0.505540	0.507095
0	-1.506515	-0.278265	0.751952
0	-1.872047	-0.876576	-0.540304
Н	-0.076296	0.901950	1.471310
Н	0.632970	-0.291316	0.133936
Н	-0.938322	1.092451	-1.208874
0	-0.549607	1.501265	-0.423544
0	1.607278	-0.877224	-0.199863
0	2.664857	-0.000909	0.123562
Н	-2.829683	-0.929509	-0.414877
Н	2.831020	0.446853	-0.718482

SR1	-TS3	:
OICT	100	٠

DICI I			
С	1.300675	-0.694996	-0.111749
0	0.440282	0.032060	0.804076
0	0.025048	1.187905	0.175157
0	2.501497	-0.049028	-0.319231
Н	1.497613	-1.630432	0.410680
Н	0.723289	-0.851699	-1.027537

Н	2.321926	0.747939	-0.831841
Н	-1.086318	0.935597	-0.135038
0	-2.121366	0.439778	-0.434308
0	-1.980913	-0.880161	-0.055889
Н	-2.176941	-0.875863	0.895793

SR1-TS4:

01(1 -			
С	-1.860454	-0.430946	0.436394
0	-0.855808	-0.677248	-0.566880
0	0.036372	0.379646	-0.534917
0	-2.642811	0.671834	0.151073
H	-2.490025	-1.319161	0.394971
H	-1.335324	-0.349742	1.395677
H	-2.079616	1.451954	0.216809
H	1.077067	-0.118697	-0.292096
0	2.032023	-0.516437	0.277136
0	3.015463	0.423082	0.018415
H	3.308700	0.674302	0.907657

SR1-TS5:

DIVE	100.		
С	0.988686	-0.220862	0.416804
0	0.925336	0.905045	-0.404897
0	-0.059220	1.800673	0.162448
Н	1.156220	0.020305	1.469958
Н	-0.187588	-0.776706	0.327684
Н	1.797339	-1.206309	-0.999962
0	1.933316	-1.082326	-0.050864
0	-1.302071	-1.251609	0.012254
0	-2.142732	-0.125569	-0.186021
Н	-0.881038	1.416118	-0.197778
Н	-2.654083	-0.097952	0.635913

SR1-TS6	:
---------	---

DIVI			
С	0.866778	-0.415892	0.379468
0	1.279217	0.774677	-0.210337
0	0.323378	1.796505	0.146304
Н	0.732416	-0.357731	1.463736
Н	-0.364637	-0.555949	-0.112503
Н	1.923821	-1.342104	-0.906802
0	1.704317	-1.430036	0.030620

0	-1.428014	-0.270002	-0.659782
0	-2.408631	-0.311895	0.362238
Н	-0.474606	1.476054	-0.324263
Н	-2.779797	-1.198906	0.250680

SR1-TS7:

UT(T 1	87.		
С	-1.380596	0.02184500	0.516987
0	-0.487604	0.48112700	-0.549589
0	0.369101	1.428118	-0.035274
0	-2.366099	-0.738519	-0.071249
Н	-0.807724	-0.615500	1.188937
Н	-1.737097	0.923840	1.024041
Н	-2.946217	-0.157871	-0.576204
Н	1.373089	0.835109	0.091678
0	2.237403	0.020237	0.217987
0	1.600977	-1.176898	-0.039525
Н	1.571299	-1.229171	-1.009184

SKT-120:

0112 1			
С	-1.761845	-0.173387	0.498528
0	-0.857545	0.354224	-0.509939
0	0.245672	0.877910	0.131837
0	-2.963082	-0.449352	-0.117287
Н	-1.349368	-1.112449	0.873280
Н	-1.816500	0.576633	1.295257
Н	-3.373317	0.382559	-0.379094
Н	1.143272	0.226318	-0.232924
0	1.992350	-0.608266	-0.307630
0	3.149321	0.015145	0.126865
Н	3.433258	-0.550023	0.861541

SR2-TS1:

5112 .			
С	-0.385677	0.553050	0.408252
0	-1.203394	-0.467046	0.794307
0	-1.753586	-1.047100	-0.457830
Н	0.174228	0.903890	1.274381
Н	0.894022	-0.065562	-0.315854
Н	-1.513539	1.135242	-0.990607
0	-0.928992	1.549619	-0.339993
0	1.861471	-0.418597	-0.619545

0	2.691090	-0.101313	0.333253
Н	-2.573362	-1.416373	-0.098980

С	0.986295	-0.224658	0.398974
0	0.823576	0.880791	-0.413106
0	-0.114307	1.772196	0.232260
Н	1.146846	-0.000182	1.455469
Н	-0.414457	-0.872757	0.363945
Н	1.844667	-1.081029	-1.071450
0	1.915231	-1.071446	-0.106942
0	-1.465186	-1.185516	0.195711
0	-2.101162	-0.156469	-0.290806
Н	-0.960040	1.385463	-0.078745

SR2-TS3:

5172 -	100.		
С	0.800142	-0.464107	0.364800
0	1.352634	0.643136	-0.268715
0	0.627947	1.809766	0.172215
Н	0.632183	-0.346491	1.436448
Н	-0.758600	-0.453436	-0.196178
Н	1.722971	-1.570328	-0.883875
0	1.486612	-1.587659	0.053270
0	-1.713027	-0.268329	-0.605154
0	-2.553801	-0.193983	0.399875
Н	-0.000323	1.931454	-0.557123

SR3-TS1:

51(5	101.		
С	-0.542619	0.273079	0.416970
0	0.276358	0.900349	-0.356866
0	1.604436	-0.459232	0.047411
Н	0.289643	-0.450111	0.930885
Н	-0.940411	0.850761	1.267387
Н	2.536510	-0.662684	-0.173989
0	-1.549212	-0.521651	-0.127307
Н	-1.282683	-0.732168	-1.032008

CH ₃ OCH ₂ C) ₂		
0	1.232288	0.291426	-0.377583
С	0.101258	0.903207	0.334241
0	1.538690	-0.891933	0.126622
0	-1.099773	0.576770	-0.240881
Н	0.255800	1.973286	0.204043
Н	0.194563	0.576186	1.375671
С	-1.558982	-0.753289	0.018479
Н	-1.587354	-0.951084	1.096304
Н	-2.565737	-0.811267	-0.392078
Н	-0.920562	-1.496739	-0.465528

Table S5. Cartesian coordinates (in Ångstroms) of various stationary points optimized at theB3LYP/6-311G(d,p) level for the $HO_2 + CH_3OCH_2O_2$ reaction.

T N /	m 1
I IVI -	- 11 1
+ 1.1	

0	-0.544440	1.334240	-0.055248
С	-0.720611	0.030497	0.680522
0	0.702277	1.573211	-0.380132
Н	2.100557	0.466477	-0.076029
0	2.812146	-0.216523	0.014098
0	2.182791	-1.380352	-0.070712
0	-2.030883	-0.315672	0.605845
Н	-0.467507	0.245446	1.718655
Н	-0.019588	-0.667868	0.210743
С	-2.434952	-0.862302	-0.657567
Н	-1.817960	-1.729525	-0.916107
Н	-3.470932	-1.172280	-0.537910
Н	-2.366315	-0.110646	-1.447896

IM-T2

0	0.444966	-1.192268	-0.389190
С	1.823025	-0.710957	-0.090921
0	-0.315487	-1.158790	0.686615
Н	-1.986114	-0.732109	0.150461
0	-2.783040	-0.211531	-0.115718
0	-2.364213	1.044288	-0.197739
Н	2.458895	-1.323740	-0.727461
0	1.962077	0.590329	-0.461914
Н	1.958828	-0.900253	0.979330
С	1.283286	1.543540	0.374094

Н	1.613425	2.523617	0.035820
Н	0.199048	1.461040	0.263001
Н	1.563635	1.399720	1.423388

TS-T1

0	0.210295	-0.709565	-0.494556
С	1.440824	-0.963461	0.257675
0	-0.446940	0.351382	0.014047
Н	-1.789451	-0.001416	0.231421
0	-2.794352	-0.244060	0.453605
0	-3.525016	0.500128	-0.308180
Н	1.636503	-2.018969	0.073805
0	2.500353	-0.245514	-0.230786
Н	1.206339	-0.745794	1.305623
С	2.520224	1.141503	0.123712
Н	3.478100	1.527186	-0.221081
Н	1.706573	1.686812	-0.360992
Н	2.440928	1.264955	1.209869

TS-	т2
-----	----

10 12			
0	0.031697	0.298454	-0.556029
С	0.797770	-0.643636	0.285673
0	-0.541896	1.245174	0.180503
Н	-2.058649	0.812798	0.109206
0	-2.899017	0.243962	0.086035
0	-2.509801	-0.975707	-0.174056
Н	0.875136	-1.518847	-0.369398
0	2.006042	-0.128770	0.665267
Н	0.199804	-0.828951	1.174111
С	2.969828	-0.017742	-0.386369
Н	3.900902	0.293544	0.083167
Н	3.115759	-0.984716	-0.882822
Н	2.665271	0.729530	-1.123840

TS-T3

10 10			
С	0.217180	0.009696	-0.382907
Н	0.242116	-0.604927	-1.267321
0	0.169026	1.300019	-0.594163
Н	-0.000865	-0.403884	0.588982
0	2.164535	-0.309224	-0.049223

0	2.436766	-1.489276	0.264609
0	-2.008815	-0.363164	-0.476514
0	-2.467196	-1.217250	0.493221
Н	-2.662411	-2.037797	0.012980
С	-0.114678	2.111269	0.562092
Н	0.654010	1.959080	1.323275
Н	-0.099717	3.142776	0.219163
Н	-1.102670	1.850124	0.944380

TS-S1

TO OT			
0	-0.036614	0.245987	0.687115
С	-1.123097	0.934358	0.084177
0	0.835082	-0.120680	-0.306189
0	2.346052	0.490498	-0.118030
0	2.842288	-0.720218	0.039407
Н	1.516468	-0.958949	-0.008792
0	-1.941898	0.119418	-0.638744
Н	-1.616638	1.380056	0.955664
Н	-0.731713	1.699293	-0.585985
С	-2.686076	-0.791297	0.138944
Н	-3.309503	-0.262148	0.871279
Н	-3.328974	-1.342843	-0.546585
H	-2.033880	-1.493819	0.667219

TS-S2

10 02			
0	0.180781	-1.240576	-0.387061
С	-0.755826	-0.390747	-0.937348
0	1.083788	-0.524651	0.805398
0	2.160293	-0.149743	0.392807
0	1.028806	1.392105	-0.604708
Н	1.088804	2.304504	-0.941517
Н	-0.131959	0.620960	-1.091249
Н	-1.022107	-0.831240	-1.905150
0	-1.914818	-0.143485	-0.242359
С	-1.756187	0.561414	0.990921
Н	-2.759567	0.773974	1.354402
Н	-1.216266	-0.049545	1.722141
Н	-1.197628	1.488140	0.827314

TS-S3

15 55			
0	0.352396	1.503618	-0.534772

С	1.157503	0.778916	0.146024
0	-1.137228	0.430328	0.444792
0	-2.363548	0.075134	0.454995
0	-2.587153	-1.097121	-0.424425
Н	-1.860242	-0.971069	-1.061280
Н	0.443025	0.271387	0.965192
0	1.790830	-0.268801	-0.536542
Н	1.868707	1.336988	0.797377
С	2.610729	-1.086900	0.287342
Н	2.017060	-1.636457	1.029094
Н	3.103190	-1.800379	-0.371205
Н	3.376495	-0.497825	0.808237

TS-S4

-0.334189	-1.675400	-0.280139
0.533418	-0.977476	0.293538
-2.007951	-0.332789	-0.138870
-1.439641	0.518333	0.566659
-0.790679	1.707740	-0.286079
-0.223650	1.177460	-0.882745
-0.202724	-0.121174	0.873619
1.060531	-1.381853	1.181226
1.367505	-0.180820	-0.516664
2.336977	0.587644	0.201405
2.937641	-0.048830	0.860022
2.987564	1.036614	-0.546799
1.857914	1.380261	0.785767
	-0.334189 0.533418 -2.007951 -1.439641 -0.790679 -0.223650 -0.202724 1.060531 1.367505 2.336977 2.937641 2.987564 1.857914	-0.334189-1.6754000.533418-0.977476-2.007951-0.332789-1.4396410.518333-0.7906791.707740-0.2236501.177460-0.202724-0.1211741.060531-1.3818531.367505-0.1808202.3369770.5876442.937641-0.0488302.9875641.0366141.8579141.380261

TS-	S5
-----	----

10 00			
0	-0.367059	1.266186	0.452468
С	0.769553	1.055135	-0.271133
0	-2.056872	0.338499	-0.454034
0	-1.518750	-0.808741	-0.458151
0	-0.967634	-1.043734	0.799218
H	-0.645811	0.024453	0.945934
Н	1.254816	2.033006	-0.433242
0	1.662774	0.207489	0.414758
Н	0.529446	0.627519	-1.265631
С	2.197217	-0.870462	-0.345575
Н	2.783768	-0.507692	-1.199002
Н	2.853184	-1.426934	0.322315
Н	1.404311	-1.535984	-0.704204

O0.3786430.8822020.493160C0.614987-0.139009-0.148125O-1.8908861.112197-0.099862O-2.011216-0.062518-0.530021O-2.066496-1.0431170.472020H-0.994539-1.2591220.733867H0.071940-1.3132570.683653H-0.131304-0.491283-0.904924O1.844658-0.566964-0.508490C2.9441620.0961270.144357H2.8282690.0465361.229583H3.835271-0.441147-0.170606H2.9978421.141161-0.163424	TS-S6			
C0.614987-0.139009-0.148125O-1.8908861.112197-0.099862O-2.011216-0.062518-0.530021O-2.066496-1.0431170.472020H-0.994539-1.2591220.733867H0.071940-1.3132570.683653H-0.131304-0.491283-0.904924O1.844658-0.566964-0.508490C2.9441620.0961270.144357H2.8282690.0465361.229583H3.835271-0.441147-0.170606H2.9978421.141161-0.163424	0	0.378643	0.882202	0.493160
O-1.8908861.112197-0.099862O-2.011216-0.062518-0.530021O-2.066496-1.0431170.472020H-0.994539-1.2591220.733867H0.071940-1.3132570.683653H-0.131304-0.491283-0.904924O1.844658-0.566964-0.508490C2.9441620.0961270.144357H2.8282690.0465361.229583H3.835271-0.441147-0.170606H2.9978421.141161-0.163424	С	0.614987	-0.139009	-0.148125
O-2.011216-0.062518-0.530021O-2.066496-1.0431170.472020H-0.994539-1.2591220.733867H0.071940-1.3132570.683653H-0.131304-0.491283-0.904924O1.844658-0.566964-0.508490C2.9441620.0961270.144357H2.8282690.0465361.229583H3.835271-0.441147-0.170606H2.9978421.141161-0.163424	0	-1.890886	1.112197	-0.099862
O-2.066496-1.0431170.472020H-0.994539-1.2591220.733867H0.071940-1.3132570.683653H-0.131304-0.491283-0.904924O1.844658-0.566964-0.508490C2.9441620.0961270.144357H2.8282690.0465361.229583H3.835271-0.441147-0.170606H2.9978421.141161-0.163424	0	-2.011216	-0.062518	-0.530021
H-0.994539-1.2591220.733867H0.071940-1.3132570.683653H-0.131304-0.491283-0.904924O1.844658-0.566964-0.508490C2.9441620.0961270.144357H2.8282690.0465361.229583H3.835271-0.441147-0.170606H2.9978421.141161-0.163424	0	-2.066496	-1.043117	0.472020
H0.071940-1.3132570.683653H-0.131304-0.491283-0.904924O1.844658-0.566964-0.508490C2.9441620.0961270.144357H2.8282690.0465361.229583H3.835271-0.441147-0.170606H2.9978421.141161-0.163424	Н	-0.994539	-1.259122	0.733867
H-0.131304-0.491283-0.904924O1.844658-0.566964-0.508490C2.9441620.0961270.144357H2.8282690.0465361.229583H3.835271-0.441147-0.170606H2.9978421.141161-0.163424	Н	0.071940	-1.313257	0.683653
O1.844658-0.566964-0.508490C2.9441620.0961270.144357H2.8282690.0465361.229583H3.835271-0.441147-0.170606H2.9978421.141161-0.163424	Н	-0.131304	-0.491283	-0.904924
C2.9441620.0961270.144357H2.8282690.0465361.229583H3.835271-0.441147-0.170606H2.9978421.141161-0.163424	0	1.844658	-0.566964	-0.508490
H2.8282690.0465361.229583H3.835271-0.441147-0.170606H2.9978421.141161-0.163424	С	2.944162	0.096127	0.144357
H 3.835271 -0.441147 -0.170606 H 2.997842 1.141161 -0.163424	Н	2.828269	0.046536	1.229583
н 2.997842 1.141161 -0.163424	Н	3.835271	-0.441147	-0.170606
	Н	2.997842	1.141161	-0.163424

TS-S7

10 07			
0	0.647952	1.624574	-0.302029
С	-0.364959	1.260624	0.353856
0	1.933278	0.125333	-0.099348
0	1.357150	-0.820015	0.515016
0	0.543850	-1.599317	-0.291133
Н	-0.449711	-0.731371	-0.556668
0	-1.217123	0.060006	-0.505160
Н	-0.201727	0.685903	1.285928
Н	-1.172979	2.000273	0.434166
С	-2.358606	-0.470027	0.187441
Н	-3.138680	0.291344	0.213015
Н	-2.718786	-1.335986	-0.367860
Н	-2.097586	-0.778400	1.204869

TS-S8

0	0.274768	0.482452	-0.394633
С	0.996017	-0.529752	0.388093
0	-0.804773	0.890794	0.297876
Н	-2.101172	0.590999	-0.636812
0	-2.442322	-0.317758	-0.393981
0	-3.556996	-0.218828	0.244365
Н	0.409903	-1.449344	0.338567
0	2.210463	-0.749484	-0.198384
Н	1.049013	-0.139872	1.412127
С	3.161688	0.301346	-0.002039
Н	3.318889	0.485726	1.067461

Н	4.092500	-0.039016	-0.451943
Н	2.835520	1.224541	-0.487664

TS-S9			
0	-1.492349	-1.132942	-0.403748
0	-2.377381	-0.447607	0.260802
Н	-2.270808	0.527952	-0.131660
0	-1.117437	1.391654	-0.133704
0	-0.185055	0.484449	-0.447053
С	0.689164	0.253796	0.749641
Н	1.044774	1.256815	1.011511
Н	0.045330	-0.171502	1.516770
0	1.666140	-0.625764	0.416535
С	2.698073	-0.094819	-0.423748
Н	3.137949	0.803344	0.025434
Н	3.456703	-0.870906	-0.502528
Н	2.311289	0.142114	-1.417549

011300	1120011		
0	1.187595	0.464611	-0.358824
С	0.039911	0.920480	0.332738
0	1.450710	-0.909486	0.061505
Н	2.384928	-0.829449	0.295690
Н	0.109125	2.006146	0.235353
0	-1.173435	0.552500	-0.230075
Н	0.115402	0.601889	1.381668
С	-1.578309	-0.792879	0.014031
Н	-2.608196	-0.873005	-0.333263
Н	-0.950494	-1.505205	-0.526886
Н	-1.539342	-1.026990	1.085981

Figure S1. The B3LYP/6-311G(d,p) optimized geometries of two conformations of the $HOCH_2O_2$ radical. Bond distances are in Å and bond angles are in degrees.

Figure S2. The B3LYP/6-311G(d,p) optimized geometries of eight conformations of the singlet $HOCH_2O_4H$ intermediate (IM-S1) and the relationship of these conformers. The values in parenthesis are three dihedral angles (in degrees) HOOO, OOOO, and OOOC, respectively.

Figure S3. The B3LYP/6-311G(d,p) optimized geometries of four conformations of the HOCH₂OOH molecule. Bond distances are in Å and bond angles are in degrees.

Figure S4. The B3LYP/6-311G(d,p) optimized geometries of the transition states involved in the reactions of HOCH₂OOH with HO₂ (SR1) and O₂ (SR2) reactions. Bond distances are in Å and bond angles are in degrees.

Figure S5. Schematic profile for the potential energy surface of the ${}^{3}O_{2}$ + HOCH₂OOH reaction. The relative energies (ΔG , in kcal/mol) at 298.15 K are calculated at the CCSD(T)/CBS//B3LYP/6-311G(d,p) level.

Figure S6. Unimolecular decomposition routes of HOCH₂OOH. The relative energies $(\Delta G, \text{ in kcal/mol})$ at 298.15 K are calculated at the CCSD(T)/CBS // B3LYP/6-311G(d,p) level.

Figure S7. The B3LYP/6-311G(d,p) optimized geometries of the intermediates (IM) and transition states (TS) involved in the $HO_2 + CH_3OCH_2O_2$ reaction. Bond distances are in Å and bond angles are in degrees.