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Figure. 1S Absorbance vs. concentration plots of TFT at different wavelengths. I = 0.11M, pH 7.0, 

T = 25°C, (▲) 385nm, (●) 412nm, (□) 435 nm.
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Figure 2S Molar extinction coefficient of TFT dependence on the salt content (I) of the medium 

(NaCl). CD = 2.9×10-5 M, pH 7.0,  = 412nm, T = 25°C. 
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Figure 3S Two-component deconvolution of the fluorescence emission spectra of TFT at different 

dye concentrations, I = 0.11 M, pH 7.0, ex = 340 nm, T = 25°C. (a) CD = 1.44×10-6 M, 

F(λem1)/F(λem2) = 0.9; (b) CD = 7.19×10-6 M, F(λem1)/F(λem2) = 2.9, (c) CD = 3.56×10-5 M, 

F(λem1)/F(λem2) = 8.1; (d) CD = 7.06×10-5 M, F(λem1)/F(λem2) indefinitely high; F(λem1)/F(λem2) is the 

ratio of fluorescence intensities at the maxima of the two component emissions. (▬) experimental; 

(- • -) first component; (---) second component; (•••) calculated sum (in the case of two 

components).
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Figure 4S Example of kinetic trace recorded for a solution containing TFT alone and therefore 

demonstrating the presence of an auto-aggregation process. CD = 2.01×10-4 M, I = 0.11 M, pH 7.0, 

 = 450nm, T = 25°C. 
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Figure 5S Plot of the reciprocal relaxation time (1/) vs. TFT monomer concentration ([D]) 

analysed according to equation (4) (continuous line); I = 0.11 M, pH 7.0, T = 25 °C.
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Figure 6S Analysis of the data of the spectrophotometric titration of the TFT/DNA system 

according to equation (6) (straight line). CD = 5.2×10-5 M, CP = 0 to 5.1×10-4 M, I = 0.01 M, pH 7.0, 

T = 25 °C
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Figure 7S Excitation (em = 450 nm) and emission (exc = 340 nm) spectra (a) and 3D contour plot 

(b) of TFT. CD = 3.6×10-5 M, I = 0.11 M, pH 7.0, T = 25 °C.        
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Figure 8S Excitation (em = 484 nm) and emission (exc = 450 nm) spectra (a) and 3D contour plot 

(b) of a TFT/DNA. CD = 3.6×10-5 M, CP = 2.5×10-4 M, I = 0.01 M, pH 7.0, T = 25 °C.       
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Figure 9S Emission spectra (a, exc = 450 nm), binding isotherm (b, em = 484 nm) and relevant 

analysis (c) according to equation (6) for a spectrofluorometric titration of TFT with DNA. CD = 

1.0×10-5 M, CP = 0 to 2.5×10-4 M, I = 0.01 M, pH 7.0, T = 25 °C.      
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Figure 10S Example of Scatchard plot obtained from absorbance titration data for the TFT/DNA 

system. CD = 5.2×10-5 M, CP = 0 to 5.1×10-4 M, I = 0.01 M, pH 7.0, T = 25 °C
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Figure 11S Temperature dependence of the binding constant K for the TFT/DNA system; (●) 

absorbance, (■) fluorescence, I = 0.01 M, pH 7.0, T = 25 °C. The continuous line is drawn 

according to the equation lnK = -H/RT + S/R.
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Figure 12S T-jump relaxation curves registered for the TFT/DNA system under low dye and 

polymer excess conditions; a) fast effect, b) slow effect, CD = 2.0×10-6 M, CP = 3.74×10-4 M. 

I = 0.11 M, pH 7.0,  = 450 nm, T = 25 °C.
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Figure 13S T-jump amplitude analysis for the fast step of the curves registered for the TFT/DNA 

system under low dye and polymer excess conditions. I = 0.11 M, pH 7.0, T = 25 °C.
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Figure 14S T-jump relaxation curves registered for the TFT/DNA system under high dye content 

conditions; a) overall curve, b) amplification of the fast effect, CD = 1.2×10-4 M, CP = 7.7×10-5 M. 

I = 0.11 M, pH 7.0,  = 450 nm, T = 25 °C. 
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Derivation of equation (4) of the text
Consider reaction scheme (S1.1)-(S1.2)                          

D + D  D2                                                                                                                    (S1.1)
D2  D2

’
 (S1.2)

where D, D2 and D2
’ represent respectively the equilibrium concentration of the dye monomer and 

dye dimer in two different forms. Let’s define also the equilibrium constant of dimerization as

Kdim = [D2]/[D]2 (S1.3)

and kiso, k-iso and Kiso  = kiso/k –iso respectively the forward and backward rate constants and the 
equilibrium constant of the isomerisation process (S1.2). The mass equation for the dye is 

           (S1.4) 𝐶𝐷 = 𝐷 + 2𝐷2 + 2𝐷 '
2

and can be expressed in its differentiated form as follows 

         (S1.5)𝛿𝐷 + 2𝛿𝐷2 + 2𝛿𝐷 '
2 = 0

where i indicates the deviation from equilibrium of the i-th species caused at the temperature-
jump. Differentiation of (S1.3) yields                                                                                                                                                                                                         

    (S1.6)                                                𝛿𝐷2 = 2𝐾𝑑𝑖𝑚𝐷𝛿𝐷

Substitution of (S1.6) in (S1.5) yields equation (S1.7)

                                         (S1.7)

𝛿𝐷2

2𝐾𝑑𝑖𝑚𝐷
+ 2𝛿𝐷2 + 2𝛿𝐷 '

2 = 0

The differential kinetic law for equation (S1.2) is 

                                     (S1.8)
 
𝑑(𝛿𝐷 '

2)
𝑑𝑡

= 𝑘𝑖𝑠𝑜𝛿𝐷2 ‒ 𝑘 ‒ 𝑖𝑠𝑜𝛿𝐷 '
2

Form equations (S1.8) and (S1.7) we obtain

                 (S1.9)                                           

 
𝑑(𝛿𝐷 '

2)
𝑑𝑡

=‒
(4𝐾𝑑𝑖𝑚𝑘𝑖𝑠𝑜𝐷

1 + 4𝐾𝑑𝑖𝑚𝐷
+ 𝑘 ‒ 𝑖𝑠𝑜)

⏟
1

𝜏

𝛿𝐷 '
2

whose integration yields the expression for the reciprocal relaxation time 1/as (equation (3) of the 
text)

                                    (S1.10)

1
𝜏 =

4𝐾𝑑𝑖𝑚𝑘𝑖𝑠𝑜𝐷

1 + 4𝐾𝑑𝑖𝑚𝐷
+ 𝑘 ‒ 𝑖𝑠𝑜
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The relationship between the monomer concentration D and the total analytical concentration CD 
can be obtained using equations (S1.3), (S1.4) and the definition of Kiso:

                                 (S1.11)𝐶𝐷 = 𝐷 + 2𝐾𝑑𝑖𝑚𝐷2 + 2𝐾𝑖𝑠𝑜𝐾𝑑𝑖𝑚𝐷2

or

                     
 𝐷2 +

𝐷
2𝐾𝑑𝑖𝑚(1 + 𝐾𝑖𝑠𝑜)

‒
𝐶𝑑

2𝐾𝑑𝑖𝑚(1 + 𝐾𝑖𝑠𝑜)
= 0

(S1.12)

That is, a second order function with only possible positive solution equal to

                      
𝐷 =

‒
1

2𝐾𝑑𝑖𝑚(1 + 𝐾𝑖𝑠𝑜)
+ [ 1

2𝐾𝑑𝑖𝑚(1 + 𝐾𝑖𝑠𝑜)]2 +
2𝐶𝑑

𝐾𝑑𝑖𝑚(1 + 𝐾𝑖𝑠𝑜)
2

(S1.13)          

For the analysis of data points according to equation (S1.10) in a first step [D] = CD approximation 
is used to obtain first Kdim and Kiso  = kiso/k –iso rough evaluation that enable to calculate [D] and re-
plot the data with an iterative procedure, until convergence is reached.

Derivation of equations (11)-(12) of the text
Consider the following reaction scheme

(S2.1)

As concerns the fast step, in the fast time scale the slow one can be neglected and the rate law, 
written in a differential way, is the following

    (S2.2)
 ‒

𝑑𝛿𝐷
𝑑𝑡

= 𝑘𝑓𝛿([𝑃] × [𝐷]) ‒ 𝑘 ‒ 𝑓𝛿𝑃𝐷'

As δ(P×D) = PδD + DδP and δD = δP = - δPD’ it turns out that

P  +  D

PD

PD'
kf

k -f

ks

k -s
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    (S2.3)
 ‒

𝑑𝛿𝐷
𝑑𝑡

= [𝑘𝑓([𝑃] + [𝐷]) + 𝑘 ‒ 𝑓]𝛿𝐷

    (S2.3)
 ‒

𝑑𝛿𝐷

𝛿𝐷
= [𝑘𝑓([𝑃] + [𝐷]) + 𝑘 ‒ 𝑓]𝑑𝑡

and thus

1/f = kf ([P]+[D]) + k -f (S2.4)

Considering now the slow step, the fast one has to be intended as a pre-equilibrium with relevant Kf 
= kf/k–f = [PD]/([P]×[D]) constant. The differential mass conservation law respect to the dye is

δD + δPD + δPD’ = 0 (S2.5)

δD + δPD +  Kf(PδD + DδP) = 0 (S2.6)

with δD = δP, thus

δPD = - {1 + Kf (P + D)} δD   (S2.7)

The rate law, written in a differential way, is the following

    (S2.8)
 
𝑑𝛿𝑃𝐷

𝑑𝑡
= 𝑘𝑆𝛿([𝑃] × [𝐷]) ‒ 𝑘 ‒ 𝑠𝛿𝑃𝐷

   
 
𝑑𝛿𝑃𝐷

𝑑𝑡
=‒ { 𝑘𝑆([𝑃] + [𝐷])

1 + 𝐾𝑓([𝑃] + [𝐷])
+ 𝑘 ‒ 𝑠}𝛿𝑃𝐷

(S2.9)

    

𝑑𝛿𝑃𝐷

𝛿𝑃𝐷
=‒ { 𝑘𝑆([𝑃] + [𝐷])

1 + 𝐾𝑓([𝑃] + [𝐷])
+ 𝑘 ‒ 𝑠}𝑑𝑡

(S2.10)

and thus

1/s = ks([P]+[D])/(1+ Kf([P]+[D])) + k-s (S2.11)

Derivation of equation (14) of the text
Consider the following reaction scheme

P  +  D

PD

PD'
kf

k -f

ks

k -s

+
D2

PD3

K3

2D
Kdim
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(S3.1)

where the formation of PD (slow) is supposed to be rate determining, whereas the other steps are 
fast. P and D indicate respectively free polymer and free dye monomer, D2 is the dye dimer, PD the 
DNA/dye monomer complex and PD3 a DNA/dye monomer/dye dimer complex. According to this 
scheme Kdim = [D2]/[D]2, Kf = kf/k -f = [PD’]/([P]×[D]), Ks = ks/k -s = [PD]/([P]×[D]) and K3 = 
[PD3]/([D2]×[PD]).

The mass conservation equations in differential form for polymer and dye are

                          (S3.2)𝛿𝑃 + 𝛿𝑃𝐷 + 𝛿𝑃𝐷' +  𝛿𝑃𝐷3 = 0            

                               (S3.3)𝛿𝐷 + 2𝛿𝐷2 + 𝛿𝑃𝐷 + 𝛿𝑃𝐷' +  3𝛿𝑃𝐷3 = 0

Differentiation of the expressions for Kdim , Kf and K3 yield the relationships

                                                     (S3.4)𝛿𝐷2 = 2𝐾𝑑𝑖𝑚𝐷𝛿𝐷

 (S3.5)𝛿𝑃𝐷' = 𝐾𝑓(𝑃𝛿𝐷 + 𝐷𝛿𝑃)

    (S3.6)𝛿𝑃𝐷3 = 𝐾3(𝐷2𝛿𝑃𝐷 + 𝑃𝐷𝛿𝐷2) = 𝐾3𝐾𝑑𝑖𝑚𝐷2𝛿𝑃𝐷 + 2𝐾3𝐾𝑠𝐾𝑑𝑖𝑚(𝑃 × 𝐷2)𝛿𝐷

Substitution of (S3.4) – (S3.6) in (S3.2) yields 

         (S3.7)
𝛿𝑃

[1 + 𝐾𝑓𝐷]
⏟
𝛼

+ 𝛿𝐷
(𝐾𝑓𝑃 + 2𝐾3𝐾𝑠𝐾𝑑𝑖𝑚𝑃 × 𝐷2)

⏟
𝛽

+ 𝛿𝑃𝐷
(1 + 𝐾3𝐾𝑑𝑖𝑚𝐷2)

⏟
𝛾

= 0

or

                                                           
‒  𝛿𝑃 =

𝛽
𝛼

𝛿𝐷 +
𝛾
𝛼

𝛿𝑃𝐷

(S3.8)

Subtraction of (S3.2) to (S3.3) yields

                               (S3.9)𝛿𝐷 ‒ 𝛿𝑃 + 2𝛿𝐷2 +  2𝛿𝑃𝐷3 = 0

Substitution of (S3.4) – (S3-8) in (S3.10) yields 
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𝛿𝐷 +

𝛽
𝛼

𝛿𝐷 +
𝛾
𝛼

𝛿𝑃𝐷 + 4𝐷𝐾𝑑𝑖𝑚𝛿𝐷 + 2𝐾3𝐾𝑑𝑖𝑚𝐷2𝛿𝑃𝐷 + 4𝐾3𝐾𝑠𝐾𝑑𝑖𝑚(𝑃 × 𝐷2)𝛿𝐷 = 0

(S3.10)

 (S3.11)
𝛿𝐷

[1 +
𝛽
𝛼

+ 4𝐷𝐾𝑑𝑖𝑚 + 4𝐾3𝐾𝑠𝐾𝑑𝑖𝑚𝑃 × 𝐷2]
⏟
𝜀

=‒ 𝛿𝑃𝐷
(𝛾
𝛼

+ 2𝐾3𝐾𝑑𝑖𝑚𝐷2)
⏟
𝜃

or

                     (S3.12)                                      
 𝛿𝑃𝐷 =‒

𝜀
𝜃

𝛿𝐷

Substituting (S3.12) in (S3.8) one obtains

       (S3.13) 
‒ 𝛿𝑃 =

(𝛽
𝛼

‒
𝛾
𝛼

×
𝜀
𝜃)

⏟
𝜇

𝛿𝐷

The rate law, in differential form, is represented by (S3.14)

               
‒

𝑑
𝑑𝑡

(𝛿𝑃𝐷' + 𝛿𝐷 + 2𝛿𝐷2) = 𝑘𝑠(𝑃𝛿𝐷 + 𝐷𝛿𝑃) ‒ 𝑘 ‒ 𝑠𝛿𝑃𝐷

(S3.14)

Substitution of (S3.4), (S3.5), (S3.12) and (S3.13) in (S3.14) yields

                   

‒
𝑑𝛿𝐷
𝑑𝑡

= { 𝑘𝑠(𝑃 ‒ 𝜇 × 𝐷) + 𝑘 ‒ 𝑠
𝜀
𝜃

𝐾𝑓(𝑃 ‒ 𝜇 × 𝐷) + 1 + 4𝐷𝐾𝑑𝑖𝑚}𝛿𝐷

(S3.15)

Thus, the expression for 1/’f dependence on the reactant content turns to be

                          

1
𝜏'𝑓

=
𝑘𝑠(𝑃 ‒ 𝜇 × 𝐷) + 𝑘 ‒ 𝑠

𝜀
𝜃

𝐾𝑓(𝑃 ‒ 𝜇 × 𝐷) + 1 + 4𝐷𝐾𝑑𝑖𝑚

(S3.16)

                                          

The equations needed to calculate [D] and [P] are obtained as follows, starting for the mass 
conservation for dye or polymer respectively. 

In particular, for the dye:

                                    (S3.17)𝐶𝐷 = 𝐷 + 2𝐷2 + 𝑃𝐷 + 3𝑃𝐷3
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                        (S3.18)𝐶𝐷 = 𝐷 + 2𝐾𝑑𝑖𝑚𝐷2 + 𝑃𝐷 + 3𝐾3𝑃𝐷 ⋅ 𝐷2

                 (S3.19) 𝐶𝐷 = 𝐷 + 2𝐾𝑑𝑖𝑚𝐷2 + 𝐾3𝑃 ⋅ 𝐷 + 3𝐾𝑑𝑖𝑚𝐾3𝐾𝑓𝑃𝐷3

Thus, [D] can be calculated solving the cubic equation (one acceptable value only over the three)

 = 0                   
𝐷3 +

2𝐾𝑑𝑖𝑚

3𝐾𝑑𝑖𝑚𝐾3𝐾𝑓𝑃
𝐷2 +

1 + 𝐾𝑓𝑃

3𝐾𝑑𝑖𝑚𝐾3𝐾𝑓𝑃
𝐷 ‒

𝐶𝐷

3𝐾𝑑𝑖𝑚𝐾3𝐾𝑓𝑃

(S3.20)

For the polymer:

                                                (S3.21)𝐶𝑃 = 𝑃 + 𝑃𝐷 + 𝑃𝐷3

   𝐶𝑃 = 𝑃 + 𝐾𝑓𝑃 ⋅ 𝐷 + 𝐾3𝑃𝐷 ⋅ 𝐷2 = 𝑃 + 𝐾𝑓𝑃 ⋅ 𝐷 + 𝐾3𝐾𝑓𝑃𝐾𝑑𝑖𝑚𝐷3

(S3.22)

                                               
𝑃 =

𝐶𝑃

1 + 𝐾𝑓𝐷 +  𝐾𝑑𝑖𝑚𝐾3𝐾𝑓𝐷3

(S3.23)

Note that a double iterative procedure is needed to analyse the data. In a first approximation, [P] = 
CP, [D] = CD, [PD] = 0 and K3 is obtained by data fit to equation (S3.16) (note Kdim and Kf are 
known but K3 is unknown). In the subsequent step [P], [D] and [PD] = Kf[P][D] are calculated from 
Kf, Kdim and K3 approximate value. Note that the calculation of [D] requires also [P] to be known 
(and vice versa, equations S3.20 and S3.23). Thus, in a first approximation [D] values are obtained 
for [P] = CP and used in equation (S3.23) to get [P] and re-insert these values in equation (S3.23) 
and so on, until convergence is reached. The converged [P], [D] and [PD] values are used to obtain 
a new K3 from equation (S3.16) and so on, until convergence is reached.   

Derivation of the relationship between relaxation curve amplitude and dye 

content
Consider reaction scheme (S4.1)-(S4.2)                          

D + D  D2                                                                                                                    (S4.1)
D2  D2’ (S4.2)

where D, D2 and D2
’ represent respectively the equilibrium concentration of the dye monomer and 

dye dimer in two different forms. These two equations are coupled together.

Since the two reactions are thermodynamically independent, in principle two different kinetic 
effects could be observed, whose amplitude can be expressed on the basis of normal reactions. If the 
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coefficients that multiply the elementary reactions (S4.1) and (S4.2) equations in order to find the 
two normal modes of reaction are respectively 1 and k, the two normal reactions are described by 
eq.(S4.3), which results from adding k times reaction (S4.2) to reaction (S4.1) (M. Citi et al., 1988)

D + D     (1 - k) D2 + k D2’               k = 1,2                                               (S4.3) 

The K values are obtained by solving the following system

 (S4-4)

that means to solve equations as
(r1g11 - k)1 + r1g12k = 0                                                                                       (S4-5)

Eq. (S4-5) yields

(S4-6)

where gij=gji and the gij coefficients are related to the equilibrium concentrations by the equations 
(G. W. Castellan, 1963)

(S4-7)

(S4.8)

(S4.9)

and rk are the exchange rate of the reactions (S4.1) and (S4.2).

r1 = k1[D]2 = k-1[D2]                                                                                      (S4.10)

r2 = k2[D2] = k-2[D2’]                                                                                       (S4.11)

For k = 1, k = 1. For 1 >> 2 (i.e. (S4.1) much faster than (S4.2), as supposed) it turns out that 1 
= r1g11, hence 1 = 0 and eq. (IV.24) becomes

D + D     D2                                                                                                   (S4.12)

Hence, the first normal reaction coincides with the elementary reaction (S4.1).

For k = 2, k = 2 and, being 2 << 1 = r1g11 we have
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(S4.13)

with Kdim = [D2]/[D]2  equilibrium constant of dimerization. Thus, the second normal reaction will 
be

2D – (2+4KdimD) D2   -(1+4KdimD)D2’                              (S4.14)

Now, for a signal recorded with absorbance detection

(S4.15)

and the expression for  can be obtained from the normal reaction (S4.14)

(S4.16)

Thus, finally

(S4.17)

The evaluation of -1 can be done as Kdim is known from the analysis of the relaxation times and 
[D], [D2] and [D2’] can be calculated from Kdim and Kiso (Table 1 of the text). The values obtained 
excellently reproduce the experimental trend of Abs (const = 2.86×104 M-1).
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