Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2014

Supplementary Information

Evidence for Intrinsic Nature of Band-Gap States Electrochemically Observed on

Atomically Flat TiO₂(110) Surfaces

Shintaro Takata¹, Yoshihiro Miura¹ and Yuji Matsumoto^{1,2*}

¹ Materials and Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku Yokohama 226-8503, Japan

² Department of Applied Chemistry, School of Engineering, Tohoku University 6-6-07 Aramaki Aza Aoba, Aoba-ku Sendai,980-8579 Japan

* Corresponding author, e-mail: matsumoto@atomol.che.tohoku.ac.jp

Supplementary S1: A set of AFM images and RHEED patterns before and after UV illumination.

Figure S1 shows a set of AFM images and RHEED patterns for a different, but similar sample before and after UV illumination. After UV illumination, a spotty RHEED pattern that appears different from spots along a Laue circle characteristic to the $TiO₂(110)-(1\times1)$ surface before UV illumination, resulted from transmission of the primary beam through asperities rising above the plane of a rough surface, was observed and consequently the surface morphology, which had been atomically flat before UV illumination, became rough, but still can be seen the original steps-and-terraces structure. This result is a direct evidence for the photoetching that has been inferred to occur during UV illumination, but it is very limited to near the surface region.

Supplementary S2: Estimation of the defect density by a simple analytical model

The defect density was estimated using the analytical model proposed by Tomkiewicz in 1979(1). In this model, the following equations can be derived:

$$
\frac{dU}{d(1/C^2)} = \frac{\varepsilon \varepsilon_0 e N_D}{2} + \frac{\varepsilon \varepsilon_0 e^2 N_D}{2C_H} \left(\frac{dN_{SS}^+}{d\Delta \phi_s}\right)
$$
(1)

$$
\Delta \phi_S = U - U_{fb} \tag{2}
$$

$$
\frac{dN_{SS}^{+}}{d\Delta\phi_s} = \frac{eN_t}{\sqrt{4\pi\lambda kT}} \exp\left(-\frac{e^2(U-U_t)^2}{4\lambda kT}\right)
$$
(3)

U: the electrode potential

 U_{fb} : the flat band potential

 U_t : the most probable potential

*N*_D: the donor density

 N_{SS} ⁺ the area concentration of ionized surface states

*N*_t: the defect density of the surface states

 ε_0 : the vacuum permittivity

ε: the relative permittivity of TiO₂ (=89) (2)

 C_H : the capacitance of the Helmholtz layer λ: the reorganization energy *k* : the Boltzmann constant

Figure S2 is a plot of the values taken from the derivative of the nonlinear Mott-Schottky plot as a function of *U*. It was fitted by Gaussian line shape to compare with the following theoretical function obtained by combining Eqs. (1) ~ (3) .

$$
\frac{dU}{d(1/C^2)} = y_0 + A \exp\left(-\frac{(U - x_0)^2}{width}\right)
$$
(4)

 63μ C/cm² (1) as follows: Then each quantity can be obtained using the value of the Helmholtz layer capacitance C_H

$$
N_D = \frac{2y_0}{\varepsilon \varepsilon_0 e}
$$

\n
$$
U_t = x_0
$$

\n
$$
N_t = \frac{C_H A \sqrt{width}}{e y_0} \sqrt{\pi}
$$

\n
$$
\lambda = width / 4kT
$$

typical range of λ for semiconductors (3). Note that the values of reorganization energy ranged from 0.48 to 1.55eV, which is within a

Supplementary S3: Behavior of the donor density N_D near the surface region

Figure S3 is a plot of the values of N_D as a function of UV illumination time (\bullet), together with those after the subsequent reduction (\bullet) and growing the TiO₂ film (\bullet). With increasing the UV illumination time, the donor density increases, approaching to the nominal value of the Nb dopant concentration of 1.4×10^{20} cm⁻³ (i.e. 0.5wt%). This indicates that the as-supplied Nb-doped $TiO₂(110)$ is likely to have a kind of dead layer near the surface region in which some of Nb dopants may become inactive. The photoetching process removes the dead layer, resulting in a fresh TiO₂ surface exposed. The donor density changed little or sometimes rather decreased even after the reduction, while the grown $TiO₂$ film had a small donor density of 1.9×10^{19} cm⁻³ near the surface region. The origin of the donors is bulk oxygen vacancies and they can be easily re-oxidized near the film surface region during cooling the sample in O_2 (4).

References

- 1. Tomkiewicz, M. The Potential Distribution at the TiO₂ Aqueous Electrolyte Interface. Tomkiewicz, M. *J. Electrochem. Soc.* **1979**, 126 (9), 1505-1510.
- 2. Grant, F. A. Properties of Rutile (Titanium Dioxide). *Rev. Mod. Phys*. **1959**, 31 (3), 646-674.
- 3 Nozik, A. J. and Memming, R. Physical Chemistry of Semiconductor–Liquid Interfaces. *J. Phys. Chem.* **1996**, 100, 13061-13078.
- 4 Takata, S.; Tanaka, R.; Hachiya, A. and Matsumoto, Y. Nanoscale Oxygen Nonstoichiometry in Epitaxial TiO₂ Films Grown by Pulsed Laser Deposition. *J. Appl. Phys.* 2011, 110, 103513-1-5.