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Experimental

Synthesis of copper(II) oleate1 

Copper(II) oleate was prepared by reacting CuCl2 with sodium oleate. Sodium oleate (80 

mmol, 29.7 g) and CuCl22H2O (40 mmol, 6.9 g) were dissolved in a mixed solvent 

composed of 80 mL of ethanol, 60 mL of water and 140 mL of hexane. The mixture was 

heated to 70 C and then kept at this temperature for four hours. The organic layer containing 

the desired product was washed three times with 30 mL of water in a separatory funnel. After 

washing, hexane layer was evaporated and the resulting product (copper(II) oleate) was 

recovered in a form of a green waxy solid.
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Characterization of Cu-In-Zn-S nanocrystals

Figure S1. X-ray diffractogram of alloyed Cu-In-Zn-S quaternary nanocrystals obtained from 

reaction mixtures of Cu/In/Zn/DDT ratio = 1/13/20/21 (batch 1); 1/13/25/50 (batch 2) and 

1/38/56/116 (batch 3). For comparison purposes, XRD patterns of the cubic2 ZnS crystal (top 

patterns) and the roquesite3 CuInS2 crystal (bottom patterns) are also provided. 

Figure S2. Energy-dispersive spectra of Cu-In-Zn-S nanocrystals.
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Table S1. EDS characteristics of alloyed Cu-In-Zn-S nanocrystals.

Cu/In/Zn/DDTa Cu/In/Znb

1 1/13/10/21 1.0/2.1/3.9

2 1/13/25/50 1.0/2.7/15.6

3 1/38/56/116 1.0/15.0/24.0
aprecursors molar ratio; bratio of elements in the nanocrystals from EDS 

Figure S3. TEM images and histograms of Cu-In-Zn-S nanocrystals.

Figure S4. Absorption (a) and emission spectra of the Cu-In-Zn-S nanocrystals
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Figure S5. 1H NMR spectra of stearic acid – capped Cu-In-Zn-S nanocrystals before (a) and 

after (b) exchange with pyridine and of pyridine (c) in CDCl3.



S5

Figure S6. FT-IR spectra of pyridine and of Cu-In-Zn-S nanocrystals before and after 
exchange with pyridine. 
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Figure S7. 1H NMR spectra of n-butylamine (blue) and of pyridine-capped Cu-In-Zn-S 
nanocrystals after ligand exchange with this compound (red) in CDCl3.

Figure S8. 1H NMR spectra of 11-mercaptoundecanoic acid (blue) and of pyridine-capped 
Cu-In-Zn-S nanocrystals after ligand exchange with this compound (red) in D2O (pH = 9.0).
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Figure S9. FT-IR spectra of pyridine-capped Cu-In-Zn-S nanocrystals and of 11-
mercaptoundecanoic acid-capped Cu-In-Zn-S nanocrystals.
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Figure S10. XPS survey spectra of stearic acid – capped Cu-In-Zn-S nanocrystals (black), 
pyridine – capped Cu-In-Zn-S nanocrystals (red), n-butylamine – capped Cu-In-Zn-S 
nanocrystals (green), MUA – capped Cu-In-Zn-S nanocrystals (blue).
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Figure S11. The high-resolution S2p XPS spectra of (a) stearic acid-, (b) pyridine-, (c) n-
butylamine-, (d) MUA-capped Cu-In-Zn-S nanocrystals. Black lines-original spectra, color 
lines-deconvoluted spectra.
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Figure S12. The high-resolution C1s XPS spectra of (a) stearic acid-, (b) pyridine-, (c) n-
butylamine-, (d) MUA-capped Cu-In-Zn-S nanocrystals. Black lines – original spectra, color 
lines-deconvoluted spectra.
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Figure S13. The high-resolution N1s XPS spectra of (a) pyridine-, (b) n-butylamine-capped 

Cu-In-Zn-S nanocrystals. Black lines-original spectra, red lines-deconvoluted spectra.

Figure S14. The high-resolution In3d XPS spectra of (a) stearic acid-, (b) pyridine-, (c) n-

butylamine-, (d) MUA-capped Cu-In-Zn-S nanocrystals. Black lines-original spectra, color 

lines-deconvoluted spectra.
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Figure S15. The high-resolution O1s XPS spectra of (a) stearic acid-, (b) pyridine-, (c) n-

butylamine-, (d) MUA-capped Cu-In-Zn-S nanocrystals. Black lines-original spectra, color 

lines-deconvoluted spectra.
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Figure S16. The high-resolution Cu2p XPS spectra of (a) pyridine-, (b) n-butylamine-, (c) 

MUA-capped Cu-In-Zn-S nanocrystals. Black lines-original spectra, red lines-deconvoluted 

spectra.
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Figure S17. The high-resolution Zn2p XPS spectra of (a) pyridine-, (b) n-butylamine-, (c) 

MUA-capped Cu-In-Zn-S nanocrystals. Black color-original spectra, red color-deconvoluted 

spectra.
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Figure S18. Emission spectra of (black) stearic acid, (red) pyridine – capped Cu-In-Zn-S 
nanocrystals in chloroform.

Characterization of Cu-In-S nanocrystals

Figure S19. Experimental and simulated4 XRD patterns of Cu-In-S nanocrystals with a 
wurtzite structure.
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Figure S20. Energy dispersive spectrum of wurtzite Cu1.6In1.0S2.3 nanocrystals.

Figure S21. TEM image of wurtzite Cu1.6In1.0S2.3 nanocrystals.
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Figure S22. 1H NMR spectra of Cu1.6In1.0S2.3 nanocrystals before and after exchange with 
pyridine in CDCl3.

Characterization of Ag-In-Zn-S alloyed nanocrystals

Figure S23. X-ray diffractogram of alloyed Ag-In-Zn-S quaternary nanocrystals obtained 
from reaction mixtures of Ag/In/Zn/DDT ratio = 1/5/14/26. For comparison purposes, XRD 
patterns of the cubic2 ZnS crystal (top patterns) and the tetragonal5 AgInS2 crystal (bottom 
patterns) are also provided.
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Figure S24. Energy dispersive spectrum of alloyed Ag-In-Zn-S nanocrystals. (Ag/In/Zn = 
1.0/3.9/12.1)

Figure S25. TEM image of alloyed Ag-In-Zn-S nanocrystals.
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Figure S26. 1H NMR spectra of stearic acid – capped Ag-In-Zn-S nanocrystals before (a) and 

after (b) exchange with pyridine and of pyridine (c) in CDCl3.
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