Carbon Nanoscroll from C₄H/C₄F-type Graphene Superlattice: MD and MM

Simulation Insights

Zilong Liu,^{ab} Qingzhong Xue,*abc Yehan Tao,^b Xiaofang Li,^b Tiantian Wu,^b

Yakang Jin^b and Zhongyang Zhang^b

^a State Key Laboratory of Heavy Oil Processing, China University of Petroleum,

Qingdao 266580, Shandong, P. R. China

^b College of Science, China University of Petroleum, Qingdao 266580, Shandong, P.

R. China

^cShengli-highland Limited Company, Dongying 257062, Shandong, P. R. China

Fig.S1 The decrease in energy as a function of simulation time. (a) non-bonding energy and van der Waals (vdW) energy in C_4H scrolls of Fig.2a. (b) non-bonding energy and electrostatic energy in C_4F scrolls of Fig.2b.

Fig.S2 Functionalized directions: X-direction (a), Y-direction (b), and Diagonal direction (c) in C_4H/C_4F -type graphene superlattices. Grey, white, and blue balls represent C, H, and F atoms, respectively.

Fig.S3 Snapshots of CNS structures formed by various edge length (68.83, 144.73, 218.63 Å) of equilateral triangle of C_4H (a1-c1) and C_4F (a2-c2).