Novel Metastable Compounds in the Zr-B System: An *ab initio* Evolutionary Study

Jian Li, Changzeng Fan*

State Key Laboratory of Metastable Materials Science and Technology, Yanshan University, Qinhuangdao 066004, P.R. China * Corresponding Author E-mail: chzfan@ysu.edu.cn

I. Structural Information of ZrB₁₂

Table S1 Optimized Crystallographic Data of ZrB₁₂

Space group	a (Å)	<i>b</i> (Å)	c (.	Å) V((Å ³)	Z
Fm3m (No. 225)	7.39	7.39	7.3	39 40	3.6	4
atom	position		х	у	Z	
Zr	4	a	0.0000	0.0000	0.000 0.00	
В	48	Bi	0.500	0.6695	0.66	595

II. Convergence of Different xc-functionals of DFT

To check the convergence of the metallicity property of the studied novel phases Zr_2B_3 and Zr_3B_2 . Different xc-functionals of DFT were tested (See figure 1 to figure 4). It was found that, the studied two novel phases are both metallic, independent on the xc-functionals of DFT used.

1. non-GGA functional: LDA (See figure S1)

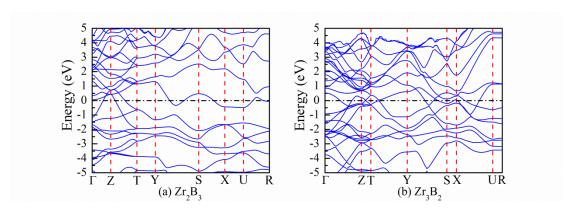


Figure S1: Calculated band structure for Zr₂B₃ and Zr₃B₂ by LDA

2. GGA functional: PBEsol (See figure S2)

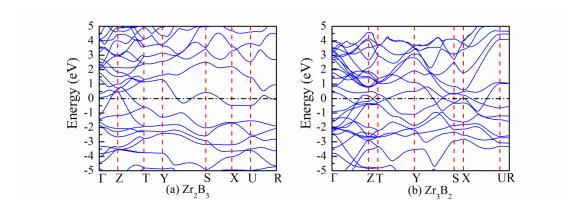


Figure S2: Calculated band structure for Zr₂B₃ and Zr₃B₂ by PBEsol

3. Full-potential linearized augmented plane waves (FLAPW) method as implemented in the WIEN2k code, GGA functional: PBE (See figure S3). (other important parameters are: the muffin-tin radii were selected to be 2.36 and 1.63 (2.47 and 1.68) for the Zr and B atoms in the Zr_2B_3 (Zr_3B_2) system; the convergence of the basis set is controlled by a cutoff parameter $R_{mt} \times K_{max} = 7$, in which K_{max} is the magnitude of the largest k vector and the k points are 2000 in the Brillouin zone).

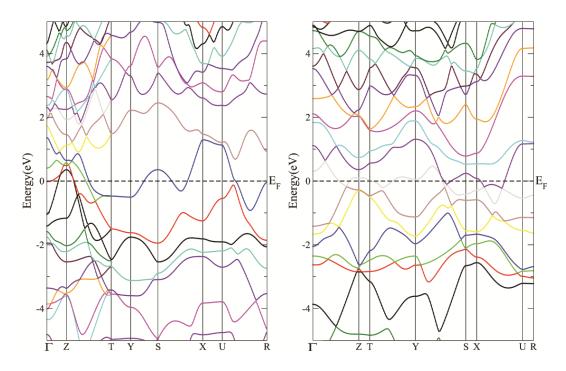


Figure S3: Calculated band structure for Zr_2B_3 and Zr_3B_2 by FLAPW and PBE (Left: Zr_2B_3 ; Right: Zr_3B_2)

4. FLAPW method as implemented in the WIEN2k code, GGA functional: PBEsol (See figure S4). (other parameters are the same as part 3)

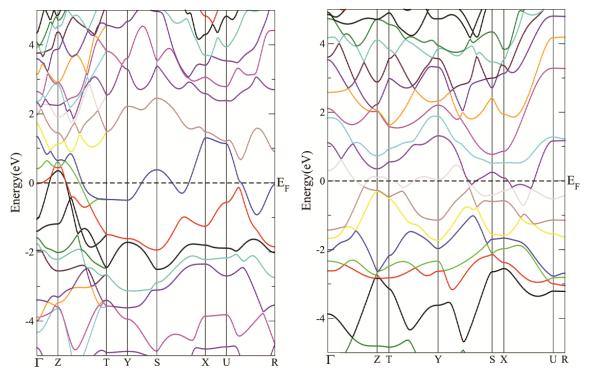


Figure S4: Calculated band structure for Zr_2B_3 and Zr_3B_2 by FLAPW and PBEsol (Left: Zr_2B_3 ; Right: Zr_3B_2)