Electronic Supplementary Information

Exploring the kinetics of Ordered Silicon Nanowires with the Formation of Nanogaps Using Metal-assisted Chemical Etching

Chia-Yun Chen,* and Yu-Rui Liu

Department of Applied Materials and Optoelectronic Engineering, National Chi Nan University, Nantou 545, Taiwan

S1 Observations of existing nanogaps at the edge of Si nanowires

Figures S1 present the side-view SEM images of etched nanowires with various etching durations using a H_2O_2/HF MaCE method, where one can clearly observe the existence of nanogap surrounding a nanowire. Noticeably, no significant differences of those nanogaps in terms of morphology can be found with the increase of etching time.

Fig. S1. Side-view SEM image of fabricated Si nanowire arrays via H_2O_2/HF MaCE method for (a) 1-sec reaction, (b) 3-min reaction, (c) 5-min reaction.

S2 Morphology of metal mesh prior to etching process

As described in the main text, 3-nm Ti (as an adhesion layer) and 20-nm Au (as a catalyst for MaCE process) were sequentially deposited on patterned Si. This bilayered structure is substantially thick to serve as a continuous layer for processing the MaCE reaction, as evidenced in Fig. S2.

Fig. S2. Top-view SEM image of Ti (3 nm)/Au (20 nm) layers on Si prior to performing MaCE process. The insert figure shows the side-view SEM image of Ti/Au layers after performing 5-min MaCE process. The scale bar is 100 nm.