Spectroscopic and Photophysical Study of the Demetallation of a Zinc Porphyrin and the Aggregation of its Free Base in a Tetraalkylphosphonium Ionic Liquid

Neeraj K. Giri, Abhinandan Banerjee, Robert W. J. Scott, Matthew F. Paige,* and Ronald P. Steer*

Supporting Information

1. Purification of the ionic liquid

A 25 mL aliquot of the ionic liquid was dissolved in 50 mL of dichloromethane and ca. 1 g activated charcoal added. The mixture was stirred overnight and filtered to recover a clear solution of the ionic liquid in dichloromethane. A specially prepared column, similar to the ones used by Earle, et al. ${ }^{1}$ for alkylimidazolium ionic liquid purification, was then used for the subsequent purification steps. The column itself was an ordinary one used in conventional chromatography, with a 24/40 female joint on top. It contained Celite on the bottom, flash chromatographic silica gel in the middle, and alumina on top; it was expected that passage through this column would remove all charged contaminants from the ionic liquid solution.

The column was subjected to a pretreatment step with ca. 100 mL dichloromethane prior to its use. Then the filtrate from the previous step was passed through the column, and finally, another 50 mL dichloromethane was used to elute the remainder of the ionic liquid. A Schlenk adapter was used in order to create a higher superincumbent pressure of gaseous nitrogen over the column, which accelerated the rate of flow of the liquid through the column.

Once eluted, the neat ionic liquid was obtained from the eluate by heating it at $55^{\circ} \mathrm{C}$ in vacuo. ${ }^{1} \mathrm{H}$ NMR spectroscopy of the purified ionic liquid in CDCl_{3} failed to suggest the presence of any impurities ($c f$. Figure S1, below).

1. Earle, M. J.; Gordon, C. M.; Plechkova, N. V.; Seddon, K. R.; Welton, T., Anal.

Chem. 2007, 79, 758-764.

Figure S1: ${ }^{1} \mathrm{H}$ NMR spectrum of the P 4448 Cl ionic liquid in CDCl_{3}.
2. Derivation of the relationships between modelled Gaussian areas of the absorption spectra on $\mathrm{acm}^{-1}(v)$ scale, the concentrations of the species present in the system and the thermodynamics of the aggregation equilibrium.

Mass balance: $[\mathrm{M}]+2[\mathrm{~J}]=$ constant for only dimeric aggregates
At equilibrium: $\quad 2 \mathrm{M} \mathrm{J} ; \mathrm{K}_{\mathrm{eq}}=[\mathrm{J}] /[\mathrm{M}]^{2}$, using activity = molar concentration From the Beer-Lambert Law: Absorbance $(\bar{v}) \propto \varepsilon(\bar{v}) \mathrm{c}$, where c is the molar conc.
$\mathrm{A}=$ Area of Gaussian $\propto \int$ Absorbance $(\bar{v}) \propto c \int \varepsilon(\bar{v})$
$\int \varepsilon(\bar{v}) \propto \mathrm{f}$, the oscillator strength of the transition
$A / f \propto$ concentration; $A_{M} / f_{M} \propto[M]$ and $A_{J} / f_{J} \propto[J]$
So, using a common proportionality constant, C:
$\mathrm{CA}_{\mathrm{M}} / \mathrm{f}_{\mathrm{M}}=[\mathrm{M}]$ and $\mathrm{CA}_{\mathrm{J}} / \mathrm{f}_{\mathrm{J}}=[\mathrm{J}]$

$$
\begin{aligned}
& \mathrm{K}_{\mathrm{eq}}=[\mathrm{J}] /[\mathrm{M}]^{2}=\left(\mathrm{CA}_{\mathrm{J}} / \mathrm{f}_{\mathrm{J}}\right) /\left(\mathrm{CA}_{\mathrm{M}} / \mathrm{f}_{\mathrm{M}}\right)^{2}=\left\{\mathrm{f}_{\mathrm{M}}{ }^{2} /\left(\mathrm{Cf}_{\mathrm{J}}\right)\right\}\left\{\mathrm{A}_{\mathrm{J}} /\left(\mathrm{A}_{\mathrm{M}}\right)^{2}\right\} \\
& \mathrm{f}_{\mathrm{J}}=\beta \mathrm{f}_{\mathrm{M}} \quad \text { where } 2.0 \leq \beta=\mathrm{f}_{\mathrm{J}} / \mathrm{f}_{\mathrm{M}} \leq 1.0 \text { if } \mathrm{n}=2 \\
& \left.\mathrm{~A}_{\mathrm{J}} /\left(\mathrm{A}_{\mathrm{M}}\right)^{2}=\left\{\mathrm{Cf}_{\mathrm{J}} /\left(\mathrm{f}_{\mathrm{M}}\right)^{2}\right\} \mathrm{K}_{\text {eq }}=\left(\mathrm{K}_{\mathrm{eq}}\right)\left\{\mathrm{C} \beta / \mathrm{f}_{\mathrm{M}}\right)\right\}
\end{aligned}
$$

Van't Hoff equation: $\square n\left\{\mathrm{~K}_{\mathrm{eq}}\right\}=-\Delta \mathrm{G}^{\circ} /(\mathrm{RT})$ and $\mathrm{d}\left\{\square n\left(\mathrm{~K}_{\mathrm{eq}}\right)\right\} / \mathrm{d}\{1 / \mathrm{T}\}=-\Delta \mathrm{H}^{\circ} / \mathrm{R}$

$$
\left.\square\left\{\mathrm{A}_{\mathrm{J}} /\left(\mathrm{A}_{\mathrm{M}}\right)^{2}\right\}=\square n\left\{\mathrm{~K}_{\mathrm{eq}}\right\}+\square n\left\{\mathrm{C} \beta / \mathrm{f}_{\mathrm{M}}\right)\right\}
$$

If $\left(\mathrm{C} \beta / \mathrm{f}_{\mathrm{M}}\right) \neq \mathrm{f}(\mathrm{T})$, then the slope of a graph of $\square n\left\{\mathrm{~A}_{\mathrm{J}} /\left(\mathrm{A}_{\mathrm{M}}\right)^{2}\right\}$ vs. $1 / T$ will give a slope $=-\Delta H^{\circ} / R$, from which ΔH° for the equilibrium reaction can be obtained.

Mass Balance: $2[J]+[M]=$ constant at all temperatures (if only dimerization)
$2 \mathrm{CA}_{\mathrm{J}} / \mathrm{f}_{\mathrm{J}}+\mathrm{CA}_{\mathrm{M}} / \mathrm{f}_{\mathrm{M}}=$ constant at all temperatures
$\left(2 \mathrm{f}_{\mathrm{M}} / \mathrm{f}_{\mathrm{J}}\right) \mathrm{A}_{\mathrm{J}}+\mathrm{A}_{\mathrm{M}}=($ constant $)\left(\mathrm{f}_{\mathrm{M}} / \mathrm{C}\right)=$ constant ${ }^{\prime}$
$2 \mathrm{~A}_{\mathrm{J}} / \beta+\mathrm{A}_{\mathrm{M}}=$ constant'
Do trials for allowed values of $\beta: 2.0 \leq \beta=\mathrm{f}_{\mathrm{J}} / \mathrm{f}_{\mathrm{M}} \leq 1.0$ (cf. Table S1). Use A1 for A_{J} and the sum of $A 3+A 4+A 5(B(0,0)+B(1,1)+B(1,0))$ for A_{M}. The best fit is for $\beta \sim 2$, suggesting that the J dimers are primarily in a side-by-side arrangement.
3. Modelling of absorption spectra (on a cm ${ }^{-1}$ scale) by a sum of Gaussian features; xc_{i} are the peak wavenumbers, w_{i} are the $\mathrm{FWHM}, \mathrm{A}_{\mathrm{i}}$ are the areas

a. $2.5 \mu \mathrm{M} \mathrm{H}_{2}$ TPP in IL; the Soret region, Figure S2 and Table S1

Figure S2: Modelling of absorption spectra at ten degree intervals; the Soret region for $2.5 \mu \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{TPP}$ in the P4448Cl IL. A sixth Gaussian centered at 24565 cm^{-1} has been inserted between $\mathrm{B}(0,0)$ and $\mathrm{B}(1,0)$ to account for hot bands (see text).

Table S1: Modelling of Soret absorption spectra (on a cm ${ }^{-1}$ scale) by a sum of Gaussian features for $2.5 \mu \mathrm{M} \mathrm{H}_{2}$ TPP in P4448Cl IL at ten degree intervals. The xc_{i} are the peak wavenumbers, w_{i} are the $\mathrm{FWHM}, \mathrm{A}_{\mathrm{i}}$ are the areas.

P	$0^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
Chi^2/DoF	$2.8411 \mathrm{E}-6$	$2.2562 \mathrm{E}-6$	$1.6361 \mathrm{E}-6$	$1.0503 \mathrm{E}-6$	$6.4028 \mathrm{E}-7$	$3.2707 \mathrm{E}-7$	$1.7992 \mathrm{E}-7$	1.1024 E-7	$4.9378 \mathrm{E}-8$	$3.8556 \mathrm{E}-8$	$9.3196 \mathrm{E}-8$
R^2	0.9982	0.9981	0.9981	0.9987	0.9993	0.9997	0.9998	0.9999	0.9999	0.99998	0.9999
y0	0	0	0	0	0	0	0	0	0	0	0
xc1	22237 ± 1	22239さ2	22241 ± 2	22241 ± 2	22236 ± 2	22228 ± 2	22216 ± 2	22201 ± 10	22186 ± 3	22176 ± 4	22185 ± 9
w1	688 ± 3	704 ± 3	724 ± 4	746 ± 4	773 ± 4	807 ± 5	848 ± 5	887 ± 13	923 ± 7	964 ± 9	1014 ± 19
A1	120 ± 0.4	106 ± 0.4	87.9 ± 0.4	68.5 ± 0.3	51.0 ± 0.2	36.7 ± 0.2	26.4 ± 0.1	19.16 ± 0.48	14.14 ± 0.09	10.61 ± 0.09	8.12 ± 0.13
xc2	$\begin{gathered} 23171 \\ \pm 26 \end{gathered}$	23212 ± 32	23250 ± 33	23287 ± 36	23323 ± 58	23372 ± 71	23348 ± 46	23349 ± 46	23456 ± 78	23468 ± 85	23295 ± 37
w2	$\begin{array}{r} 426 \\ +42 \end{array}$	$\begin{aligned} & 447 \\ & \pm 43 \end{aligned}$	$\begin{aligned} & 458 \\ & \pm 45 \end{aligned}$	$\begin{aligned} & 468 \\ & \pm 44 \end{aligned}$	$\begin{aligned} & 478 \\ & \pm 54 \end{aligned}$	$\begin{aligned} & 497 \\ & \pm 55 \end{aligned}$	482 ± 34	$\begin{aligned} & 482 \\ & \pm 52 \end{aligned}$	565 ± 46	$\begin{aligned} & 585 \\ & \pm 49 \end{aligned}$	$\begin{aligned} & 489 \\ & \pm 31 \end{aligned}$
A2	$\begin{gathered} 8.8 \\ \pm 1.8 \end{gathered}$	$\begin{gathered} 9.5 \\ \pm 1.9 \\ \hline \end{gathered}$	$\begin{gathered} 9.15 \\ \pm 2.03 \end{gathered}$	$\begin{gathered} 8.71 \\ \pm 1.70 \end{gathered}$	$\begin{gathered} 8.73 \\ \pm 2.62 \end{gathered}$	$\begin{gathered} 9.66 \\ \pm 3.45 \end{gathered}$	$\begin{gathered} 8.01 \\ \pm 2.01 \end{gathered}$	$\begin{gathered} 7.76 \\ \pm 3.04 \end{gathered}$	13.66 ± 4.89	$\begin{aligned} & 14.96 \\ & \pm 5.68 \end{aligned}$	$\begin{gathered} 6.69 \\ \pm 1.47 \end{gathered}$
xc3	23853 ± 28	23885 ± 35	23898 ± 21	23903 ± 17	23901 ± 20	23896 ± 25	23906 ± 5	$\begin{gathered} 23893 \\ \pm 10 \end{gathered}$	23902 ± 8	23900 ± 8	$\begin{gathered} 23885 \\ \pm 16 \end{gathered}$
w3	$\begin{aligned} & 671 \\ & \pm 60 \\ & \hline \end{aligned}$	$\begin{aligned} & 587 \\ & \pm 62 \\ & \hline \end{aligned}$	$\begin{aligned} & 552 \\ & \pm 27 \\ & \hline \end{aligned}$	$\begin{aligned} & 537 \\ & \pm 24 \\ & \hline \end{aligned}$	$\begin{aligned} & 525 \\ & \pm 36 \\ & \hline \end{aligned}$	$\begin{aligned} & 514 \\ & \pm 35 \\ & \hline \end{aligned}$	539 ± 18	$\begin{aligned} & 538 \\ & \pm 18 \\ & \hline \end{aligned}$	527 ± 20	$\begin{aligned} & 532 \\ & \pm 20 \\ & \hline \end{aligned}$	$\begin{aligned} & 576 \\ & \pm 19 \\ & \hline \end{aligned}$
A3	34 ± 5.3	42 ± 6	55 ± 4	68 ± 8.3	$\begin{gathered} 79.2 \\ \pm 11.7 \end{gathered}$	83.8 ± 22.6	98.7 ± 5.3	98.2 ± 9.3	95.2 ± 12.9	$\begin{gathered} 95.2 \\ \pm 13.7 \end{gathered}$	$\begin{gathered} 107.2 \\ \pm 15 \end{gathered}$
xc4	24561 ± 177	24511 ± 59	24479 ± 44	24462 ± 33	24473 ± 111	24429 ± 91	24476 ± 36	24475 ± 50	24429 ± 40	24426 ± 37	24514 ± 196
w4	367 ± 539	339 ± 381	338 ± 220	334 ± 147	556 ± 372	634 ± 587	501 ± 105	642 ± 227	588 ± 156	603 ± 172	721 ± 543
A4	1.92 ± 13.64	1.91 ± 9.13	2.51 ± 6.62	2.89 ± 5.18	15.9 ± 26.0	23.3 ± 39.1	15.26 ± 10.51	23.27 ± 15.59	23.18 ± 10.14	24.66 ± 12.72	27.78 ± 45.98
xc5	24934 ± 728	24876 ± 278	24859 ± 167	24848 ± 259	25069 ± 181	25083 ± 215	25020 ± 56	25105 ± 106	25028 ± 109	25032 ± 109	25194 ± 491
w5	638 ± 2298	761 ± 2028	826 ± 1798	908 ± 1237	639 ± 589	625 ± 460	654 ± 250	586 ± 103	605 ± 186	622 ± 188	740 ± 551
A5	5.82 ± 60	10.33 ± 82	14.7 ± 111.1	21.8 ± 91.1	15.4 ± 29.83	15.6 ± 31.0	19.4416 .27	11.39 ± 7.56	14.11 ± 18.23	15.39 ± 18.74	18.91 ± 36.11
xc6	25950 ± 587	26004 ± 814	26103 ± 1269	26313 ± 4995	25903 ± 413	25888 ± 380	25855 ± 300	25927 ± 347	25684 ± 699	25743 ± 551	25999 ± 66
w6	1385 ± 9287	1405 ± 11734	1609 ± 19975	1603 ± 19404	803 ± 1279	837 ± 1084	882 ± 775	2058 ± 2013	1368 ± 1490	1278 ± 1254	522 ± 200
A6	14.7 ± 101.5	14.9 ± 131.9	17.2 ± 226.9	18.10 ± 250.7	9.1 ± 18.2	9.74 ± 15.88	10.67 ± 11.96	26.05 ± 25.85	18.65 ± 25.51	17.02 ± 20.73	5.02 ± 4.13

b. $2.5 \mu \mathrm{M}$ ZnTPP in IL; the Soret region, Figure S3 and Table S2

Figure S3: Modelling of absorption spectra at ten degree intervals; the Soret region for $2.5 \mu \mathrm{M} \mathrm{ZnTPP}$ in the P4448Cl IL prior to completion of the demetallation (see text).

Table S2: Gaussian modelling of Soret absorption bands for $2.5 \mu \mathrm{M} \mathrm{ZnTPP}$ in the P4448Cl IL prior to complete demetallation.

P	$0^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
Chi^2 /DoF	$2.4067 \mathrm{E}-6$	$2.5784 \mathrm{E}-6$	$2.7048 \mathrm{E}-6$	$2.6383 \mathrm{E}-6$	2.4062E-6	$2.1439 \mathrm{E}-6$	$1.9227 \mathrm{E}-6$	$1.7515 \mathrm{E}-6$	$1.5312 \mathrm{E}-6$	1.2721E-6	$1.0962 \mathrm{E}-6$
R^2	0.99859	0.99813	0.99741	0.99699	0.99728	0.99783	0.99827	0.99856	0.99884	0.99913	0.99933
y0	0	0	0	0	0	0	0	0	0	0	0
xc1	22202 ± 4	22221 ± 3	22223 ± 5	22214 ± 7	22197 ± 9	22169 ± 11	22135 ± 14	22100 ± 16	22083 ± 18	22071 ± 22	22057 ± 26
w1	730 ± 6	762 ± 6	792 ± 8	817 ± 11	842 ± 15	859 ± 19	866 ± 24	861 ± 28	869 ± 33	864 ± 39	853 ± 46
A1	102 ± 2	98 ± 1	86 ± 1	69 ± 1	53 ± 1	40 ± 1	30 ± 1	24 ± 1	19 ± 1	15 ± 1	11 ± 1
xc2	22934 ± 2	22936 ± 2	22938 ± 2	22936 ± 3	22931 ± 3	22924 ± 2	22917 ± 2	22911 ± 2	22905 ± 2	22901 ± 2	22897 ± 2
w2	337 ± 5	366 ± 5	387 ± 5	407 ± 6	422 ± 6	434 ± 6	444 ± 6	456 ± 5	462 ± 5	472 ± 6	485 ± 6
A2	33 ± 1	39 ± 1	41 ± 1	43 ± 1	44 ± 1	45 ± 1	45 ± 1	45 ± 1	45 ± 1	43 ± 1	39 ± 1
xc3	23539 ± 37	23782 ± 10	23856 ± 6	23880 ± 7	23884 ± 8	23888 ± 9	23886 ± 5	23872 ± 9	23871 ± 10	23866 ± 9	23859 ± 7
w3	1355 ± 71	953 ± 36	793 ± 16	703 ± 12	659 ± 13	647 ± 10	643 ± 9	629 ± 12	640 ± 11	640 ± 11	639 ± 12
A3	56 ± 3	50 ± 2	59 ± 1	69 ± 2	79 ± 2	88 ± 4	94 ± 2	93 ± 7	99 ± 6	103 ± 6	107 ± 9
xc4	25068 ± 303	$\begin{aligned} & 24936 \\ & \pm 102 \end{aligned}$	24873 ± 93	24808 ± 69	$\begin{aligned} & 24823 \\ & \pm 195 \end{aligned}$	24740 ± 33	$\begin{aligned} & 24750 \\ & \pm 134 \end{aligned}$	24796 ± 91	$\begin{aligned} & 24794 \\ & \pm 167 \end{aligned}$	$\begin{aligned} & 24766 \\ & \pm 244 \end{aligned}$	24761 ± 89
w4	442 ± 448	447 ± 362	515 ± 236	544 ± 256	693 ± 252	575 ± 289	663 ± 245	1012 ± 445	936 ± 438	936 ± 499	1082 ± 480
A4	2 ± 6	3 ± 7	6 ± 11	8 ± 15	16 ± 15	10 ± 24	16 ± 26	32 ± 17	31 ± 21	32 ± 30	42 ± 23
xc5	25710 ± 225	$\begin{aligned} & 25546 \\ & \pm 503 \end{aligned}$	$\begin{aligned} & 25534 \\ & \pm 427 \end{aligned}$	$\begin{aligned} & 25425 \\ & \pm 643 \end{aligned}$	$\begin{aligned} & 25600 \\ & \pm 523 \end{aligned}$	$\begin{aligned} & 25282 \\ & \pm 857 \end{aligned}$	$\begin{aligned} & 25407 \\ & \pm 851 \end{aligned}$	$\begin{aligned} & 25946 \\ & \pm 475 \end{aligned}$	$\begin{aligned} & 25841 \\ & \pm 412 \end{aligned}$	$\begin{aligned} & 25806 \\ & \pm 822 \end{aligned}$	26059 ± 846
w5	737 ± 1653	882 ± 1478	922 ± 1144	977 ± 1149	825 ± 1028	$\begin{aligned} & 1033 \\ & \pm 1066 \end{aligned}$	964 ± 1119	810 ± 1907	864 ± 1743	940 ± 2436	924 ± 2648
A5	5 ± 10	6 ± 11	10 ± 15	13 ± 19	9 ± 17	17 ± 29	14 ± 28	6 ± 22	8 ± 24	8 ± 32	9 ± 38

4. Figure S4: Van't Hoff plot for $25 \mu \mathrm{M}$ porphyrin in P 4448 Cl ionic liquid

5. Modelling of Q band absorption spectra (on a cm ${ }^{-1}$ scale) by a sum of Gaussian features; xc_{i} are the peak wavenumbers, w_{i} are the FWHM, A_{i} are the areas

$2.5 \mu \mathrm{M} \mathrm{H}_{2}$ TPP in IL; the \mathbf{Q} band region, Figure S5 and Table S3

Figure S5: Modelling of absorption spectra at ten degree intervals; the Q band region for $2.5 \mu \mathrm{M} \mathrm{H} \mathrm{H}_{2} \mathrm{TPP}$ in the P4448Cl IL.

Table S3：Modelling of absorption spectra（on a cm ${ }^{-1}$ scale）in the Q band region at ten degree intervals by a sum of Gaussian features for $2.5 \mu \mathrm{M} \mathrm{H}_{2} \mathrm{TPP}$ in P4448Cl IL． The xc_{i} are the peak wavenumbers， w_{i} are the $\mathrm{FWHM}, \mathrm{A}_{\mathrm{i}}$ are the areas．

P	$0^{\circ} \mathrm{C}$	$10^{\circ} \mathrm{C}$	$20^{\circ} \mathrm{C}$	$30^{\circ} \mathrm{C}$	$40^{\circ} \mathrm{C}$	$50^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$70^{\circ} \mathrm{C}$	$80^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$	$100^{\circ} \mathrm{C}$
$\begin{aligned} & \hline \mathrm{Chi}^{\wedge} 2 \\ & \text { /DoF } \end{aligned}$	4．5647E－9	$4.3258 \mathrm{E}-9$	4．5787E－9	5．4898E－9	7．1832E－9	8．8878E－9	8．2527E－9	5．908E－9	$3.7977 \mathrm{E}-9$	7．2827E－9	$3.8049 \mathrm{E}-9$
R＾2	0.99985	0.9998	0.99967	0.99929	0.99835	0.99693	0.99671	0.99768	0.99857	0.99743	0.99871
y0	0	0	0	0	0	0	0	0	0	0	0
xc1	14967 ± 3	14978 ± 9	14980 ± 2	15000 5	14926 ± 123	14621 ± 536	14753 ± 81	14873 ± 33	15026 ± 9	14831 ± 48	15．57 ± 14
w1	604 ± 9	642 ± 14	645 ± 12	733 ± 15	950 ± 43	835 ± 250	791 ± 57	876 ± 31	1107 ± 10	986 ± 53	1245 ± 17
A1	9.5 ± 0.8	9．9さ1．4	6.8 ± 12	7.9 ± 0.7	3.4 ± 2.9	1.4 ± 2.7	2.3 ± 0.5	2.5 ± 0.2	2.9 ± 0.0	1．5士0．1	1.9 ± 0.0
xc2	14957 ± 12	14937 ± 96	14982 ± 6	14942さ56	15053 ± 16	15116 120	15281 ± 33	15352 ± 5	15348さ3	15342 ± 5	15339さ3
w2	902 ± 14	970 ± 36	960 ± 24	1158 ± 60	759 ± 65	799 ± 63	644 ± 33	476 ± 22	312 ± 9	438 ± 18	331 ± 8
A2	8.3 ± 0.8	5.8 ± 1.9	6 ± 0.7	2.7 ± 0.8	4.6 ± 2.9	4.8 ± 2.7	2.3 ± 0.5	1．1 10.2	0．5士0．0	0.9 ± 0.1	0.5 ± 0.0
xc3	16130 ± 272	16168 ± 31	16143 ± 44	16194 ± 52	16168 ± 27	16206 ± 33	16190 ± 31	16190 ± 64	16361 ± 107	16311 ± 616	16321 ± 90
w3	613 ± 170	633 ± 247	520 ± 78	551 ± 68	461 ± 50	438 ± 48	447 ± 51	557 ± 92	475 ± 95	646 ± 437	422 ± 88
A3	1.8 ± 3.0	1.1 ± 2.7	0.9 ± 0.7	1．0さ0．4	0.6 ± 0.2	0.5 ± 0.1	0.4 ± 0.1	0.5 ± 0.1	0.4 ± 0.2	0.4 ± 1.0	0.3 ± 0.2
xc4	16614 ± 438	16603 ± 659	16692 ± 126	16816 ± 50	16802 ± 21	16823 ± 14	16835 ± 12	16848 ± 19	16854 ± 27	16844 ± 149	16825 ± 16
w4	665 5333	1058 ± 624	798 ± 247	656 ± 116	685 577	616 ± 68	610 ± 47	574 ± 47	501 ± 81	634 ± 155	522 ± 77
A4	1.6 ± 3.4	2.6 ± 3.4	2.0 ± 0.9	1.6 ± 0.4	1.8 ± 0.2	1.6 ± 0.2	1.6 ± 0.1	1.5 ± 0.2	1.3 ± 0.3	1.6 ± 1.0	1.4 ± 0.3
xc5	17381 ± 149	17448 ± 12.8	17507さ52	17503 ± 36	17517さ39	17489 44	17489 530	17459 24	17417さ59	17502 ± 45	17405 ± 65
w5	620 ± 241	254 ± 43	461 ± 111	415 ± 76	400 ± 90	410 ± 93	356 ± 65	344 ± 46	438 ± 82	359 ± 92	449 ± 87
A5	0.6 ± 0.6	0．1 ± 0.04	0.3 ± 0.2	0.3 ± 0.1	0.2 ± 0.1	0.2 ± 0.1	0.2 ± 0.1	0.2 ± 0.0	0.3 ± 0.1	0.1 ± 0.1	0.3 ± 0.1
xc6	18259 530	732 ± 85	18231 ± 7	18226さ13	18229 ± 12	18223 10	18216さ9	18210さ3	18205 ± 6	18200 3	18195さ3
w6	740 ± 100	732 ± 85	618 ± 22	599 ${ }^{\text {a }}$	582 ± 27	575 \pm	580 ± 20	582 ± 8	584 ± 17	597 ± 10	598 ± 8
A6	1.1 ± 0.2	1.3 ± 0.4	1．5士0．1	1.8 ± 0.2	1.9 ± 0.2	2.1 ± 0.2	2.2 ± 0.2	2.3 ± 0.0	2.4 ± 0.1	2.5 ± 0.0	2.5 ± 0.0
xc7	19375 1115	19402 ± 43	19421 ± 49	19419さ7	19422 ± 35	19418 ± 7	19411 ± 6	19426 ± 20	19411 4	19409 ± 28	19400 21
w7	780 ± 193	719 ± 203	740 ± 51	723 ± 60	721 ± 107	715 ± 45	709 ± 41	741 ± 18	732 ± 26	748 ± 29	750 ± 23
A7	1.7 ± 1.9	2.0 ± 2.8	3.1 ± 1.0	3.6 ± 1.1	4．5さ3．2	4.8 ± 1.1	5．1 11.1	6.2 ± 0.5	5.8 ± 0.7	6．5土1．2	6．5土1．0
xc8	20664 ± 1239	$\begin{aligned} & 20666 \pm 185 \\ & 0 \end{aligned}$	20569さ594	20861 ± 773	$\begin{array}{\|l\|} \hline 20578 \pm 106 \\ 5 \\ \hline \end{array}$	20609 305	20468さ211	20445士160	20878 ± 405	20556さ560	20519 351
w8	1351 ± 2660	1496 ± 4380	1165 ± 1380	1768 ± 1629	1368 ± 3483	1648さ940	1529 ± 729	914 ± 442	1863 ± 853	1172 11355	1181 ± 1031
A8	3.6 ± 9.3	4.0 ± 14.5	2.9 ± 4.5	5．7さ6．5	3.9 ± 11.5	4．9さ2．9	4．7さ2．2	2．5さ1．6	6.5 ± 3.6	3．6さ5．2	3.4 ± 3.6

6. Absorption spectra of the purified ionic liquid as a function of temperature

Figure S6: Absorption spectrum of control P 4448 Cl ionic liquid. Measurements are performed under the same experimental conditions as reported for samples. The absorption band at $13300 \mathrm{~cm}^{-1}$ is the $\Delta \mathrm{v}=5 \mathrm{C}-\mathrm{H}$ stretching overtone of the alkyl substituents of the IL. ${ }^{2}$
2. Henry, B. R.; Greenlay, W. R. A., J. Chem. Phys. 1980, 72, 5516-5524.
7. Fluorescence decay profiles: $2.5 \mu \mathrm{M} \mathrm{H}_{2} \mathrm{TPP}$ in undegassed P 4448 Cl ionic liquid at room temperature. $\log _{10}$ (total counts) vs. time in ns. The solid line is the multiexponential fit. The bottom panel is the distribution of weighted residuals. The green curve is the instrument response function. The full set of data extracted from these decays is in Table 1 of the main text.

Figure S7A: Excitation in Soret J aggregate band at 458 nm , observation at 693 nm

Figure S7B: Excitation in Soret monomer band at 414 nm, observation at 716 nm

Figure S7C: Excitation in the Soret monomer/J dimer overlap region at 436 nm , observation at 693 nm

