Spectroscopic and Photophysical Study of the Demetallation of a Zinc Porphyrin and the Aggregation of its Free Base in a Tetraalkylphosphonium Ionic Liquid

Neeraj K. Giri, Abhinandan Banerjee, Robert W. J. Scott, Matthew F. Paige,* and Ronald P. Steer*

Supporting Information

1. Purification of the ionic liquid

A 25 mL aliquot of the ionic liquid was dissolved in 50 mL of dichloromethane and *ca.* 1g activated charcoal added. The mixture was stirred overnight and filtered to recover a clear solution of the ionic liquid in dichloromethane. A specially prepared column, similar to the ones used by Earle, *et al.*¹ for alkylimidazolium ionic liquid purification, was then used for the subsequent purification steps. The column itself was an ordinary one used in conventional chromatography, with a 24/40 female joint on top. It contained Celite on the bottom, flash chromatographic silica gel in the middle, and alumina on top; it was expected that passage through this column would remove all charged contaminants from the ionic liquid solution.

The column was subjected to a pretreatment step with *ca*. 100 mL dichloromethane prior to its use. Then the filtrate from the previous step was passed through the column, and finally, another 50 mL dichloromethane was used to elute the remainder of the ionic liquid. A Schlenk adapter was used in order to create a higher superincumbent pressure of gaseous nitrogen over the column, which accelerated the rate of flow of the liquid through the column.

Once eluted, the neat ionic liquid was obtained from the eluate by heating it at 55°C in vacuo. ¹H NMR spectroscopy of the purified ionic liquid in CDCl₃ failed to suggest the presence of any impurities (*cf.* Figure S1, below).

1. Earle, M. J.; Gordon, C. M.; Plechkova, N. V.; Seddon, K. R.; Welton, T., *Anal. Chem.* **2007**, *79*, 758–764.

Figure S1: ¹H NMR spectrum of the P4448Cl ionic liquid in CDCl_{3.}

2. Derivation of the relationships between modelled Gaussian areas of the absorption spectra on a cm⁻¹ (\bar{v}) scale, the concentrations of the species present in the system and the thermodynamics of the aggregation equilibrium.

Mass balance: [M] + 2[J] = constant for only dimeric aggregates At equilibrium: $2 M \otimes J$; $K_{eq} = [J]/[M]^2$, using activity = molar concentration From the Beer-Lambert Law: Absorbance $(\overline{v}) \propto \varepsilon(\overline{v})c$, where c is the molar conc. $A = \text{Area of Gaussian} \propto \int \text{Absorbance}(\overline{v}) \propto c \int \varepsilon(\overline{v})$ $\int \varepsilon(\overline{v}) \propto f$, the oscillator strength of the transition $A/f \propto \text{concentration}; A_M/f_M \propto [M] \text{ and } A_J/f_J \propto [J]$ So, using a common proportionality constant, C: $CA_M/f_M = [M] \text{ and } CA_J/f_J = [J]$
$$\begin{split} &K_{eq} = [J]/[M]^2 = (CA_J/f_J)/(CA_M/f_M)^2 = \{f_M^2/(Cf_J)\}\{A_J/(A_M)^2\} \\ &f_J = \beta f_M \quad \text{where } 2.0 \leq \beta = f_J/f_M \leq 1.0 \text{ if } n = 2 \\ &A_J/(A_M)^2 = \{Cf_J/(f_M)^2\}K_{eq} = (K_{eq})\{C\beta/f_M\} \end{split}$$

Van't Hoff equation:
$$\Box n\{K_{eq}\} = -\Delta G^{\circ}/(RT)$$
 and $d\{\Box n(K_{eq})\}/d\{1/T\} = -\Delta H^{\circ}/R$

 $\Box n\{A_{\rm J}/(A_{\rm M})^2\} = \Box n\{K_{\rm eq}\} + \Box n\{C\beta/f_{\rm M}\}\}$

If $(C\beta/f_M) \neq f(T)$, then the slope of a graph of $\Box n\{A_J/(A_M)^2\}$ vs. 1/T will give a slope = $-\Delta H^\circ/R$, from which ΔH° for the equilibrium reaction can be obtained.

Mass Balance: 2[J] + [M] = constant at all temperatures (if only dimerization)

 $2CA_J/f_J + CA_M/f_M$ = constant at all temperatures

 $(2f_M/f_J)A_J + A_M = (constant)(f_M/C) = constant'$

 $2A_J/\beta + A_M = constant'$

Do trials for allowed values of β : 2.0 $\leq \beta = f_J/f_M \leq 1.0$ (*cf.* Table S1). Use A1 for A_J and the sum of A3+A4+A5 (B(0,0) + B(1,1) + B(1,0)) for A_M. The best fit is for $\beta \sim 2$, suggesting that the J dimers are primarily in a side-by-side arrangement.

3. Modelling of absorption spectra (on a cm⁻¹ scale) by a sum of Gaussian features; xc_i are the peak wavenumbers, w_i are the FWHM, A_i are the areas

a. 2.5 μ M H₂TPP in IL; the Soret region, Figure S2 and Table S1

Figure S2: Modelling of absorption spectra at ten degree intervals; the Soret region for 2.5 μ M H₂TPP in the P4448Cl IL. A sixth Gaussian centered at 24565 cm⁻¹ has been inserted between B(0,0) and B(1,0) to account for hot bands (see text).

Р	0°C	10°C	20 ⁰ C	30°C	40°C	50°C	60°C	70°C	80°C	2006	100°C
Chi^2/DoF	2.8411E-6	2.2562E-6	1.6361E-6	1.0503E-6	6.4028E-7	3.2707E-7	1.7992E-7	1.1024 E-7	4.9378E-8	3.8556E-8	9.3196E-8
R^2	0.9982	0.9981	0.9981	0.9987	0.9993	0.9997	0.9998	0.9999	0.9999	0.99998	0.9999
y0	0	0	0	0	0	0	0	0	0	0	0
xc1	22237±1	22239±2	22241±2	22241±2	22236±2	22228±2	22216±2	22201±10	22186±3	22176±4	22185±9
w1	688±3	704±3	724±4	746±4	773±4	807±5	848±5	887±13	923±7	964 ±9	1014±19
A1	120±0.4	106±0.4	87.9±0.4	68.5±0.3	51.0±0.2	36.7±0.2	26.4±0.1	19.16±0.48	14.14 ±0.09	10.61±0.09	8.12±0.13
xc2	23171 ±26	23212±32	23250±33	23287±36	23323±58	23372±71	23348±46	23349±46	23456±78	23468±85	23295±37
w2	426 +47	447 +43	458 +45	468 +44	478 +54	497 +55	482 ±34	482 +5 <i>2</i>	565 ±46	585 +49	489 +31
A2	8.8	9.5	9.15	8.71	8.73	9.66	8.01	7.76	13.66 +4.89	14.96	6.69
	±1.8	<u>±1.9</u>	±2.03	±1.70	±2.62	±3.45	±2.01	±3.04		±5.68	±1.47
xc3	23853±28	23885±35	23898±21	23903±17	23901±20	23896±25	23906±5	23893	23902±8	23900±8	23885
								±10			±16
w3	671	587	552	537	525	514	539±18	538	527±20	532	576
	±60	±62	±27	±24	±36	±35		±18		±20	±19
A3	34±5.3	42±6	55±4	68±8.3	79.2	83.8±22.6	98.7±5.3	98.2±9.3	95.2±12.9	95.2	107.2
7					±11.7					±13.7	±15
xc4	24561±177	24511±59	24479±44	24462±33	24473±111	24429±91	24476±36	24475±50	24429 ±40	24426±37	24514±196
w4	367±539	339±381	338±220	334±147	556 <u>±</u> 372	634 ±587	501 ±105	642±227	588 ±156	603±172	721±543
A4	1.92±13.64	1.91±9.13	2.51±6.62	2.89±5.18	15.9±26.0	23.3 ±39.1	15.26±10.51	23.27±15.59	23.18±10.14	24.66±12.72	27.78±45.98
xc5	24934±728	24876±278	24859±167	24848±259	25069±181	25083±215	25020±56	25105±106	25028±109	25032±109	25194±491
w5	638 <u>+</u> 2298	761 <u>+</u> 2028	826±1798	908 <u>+</u> 1237	639±589	625 <u>±</u> 460	654±250	586 <u>±1</u> 03	605 <u>±1</u> 86	622±188	740±551
A5	5.82±60	10.33±82	14.7±111.1	21.8±91.1	15.4±29.83	15.6±31.0	19.44 16.27	11.39±7.56	14.11±18.23	15.39±18.74	18.91±36.11
xc6	25950±587	26004±814	26103±1269	26313±4995	25903±413	25888±380	25855±300	25927±347	25684 ±699	25743±551	25999±66
w6	1385±9287	1405±11734	1609±19975	1603±19404	803±1279	837 ±1084	882 ±775	2058±2013	1368 ±1490	1278±1254	522±200
A6	14.7±101.5	14.9±131.9	17.2±226.9	18.10±250.7	9.1±18.2	9.74±15.88	10.67±11.96	26.05±25.85	18.65 ±25.51	17.02±20.73	5.02±4.13

 $\label{eq:solution} \begin{array}{l} \textbf{Table S1:} \ \text{Modelling of Soret absorption spectra (on a cm^{-1} scale) by a sum of Gaussian features for 2.5 μM$ H_2$TPP in P4448Cl IL at ten degree intervals. The xc_i are the peak wavenumbers, w_i are the FWHM, A_i are the areas. \\ \end{array}$

b. 2.5 μ M ZnTPP in IL; the Soret region, Figure S3 and Table S2

Figure S3: Modelling of absorption spectra at ten degree intervals; the Soret region for 2.5 μ M ZnTPP in the P4448Cl IL prior to completion of the demetallation (see text).

100°C	1.0962E-6	0.99933	0	22057 ±26	853 ±46	11±1	22897±2	485 ±6	39±1	23859±7	639 <u>±</u> 12	107 ±9	24761±89	1082 ±480	42 ±23	26059 ±846	924 ±2648	9 <u>±</u> 38
0 ₀ 06	1.2721E-6	0.99913	0	22071±22	864±39	15±1	22901±2	472±6	43 ±1	23866±9	640±11	103 ±6	24766 ±244	936 ±499	32 ±30	25806 ±822	940 ±2436	8 ±32
80°C	1.5312E-6	0.99884	0	22083±18	869 ±33	19±1	22905 ±2	462 ±5	45±1	23871±10	640±11	9∓66	24794 ±167	936 ±438	31±21	25841 ±412	864 ±1743	8 ±24
70°C	1.7515E-6	0.99856	0	22100±16	861±28	24±1	22911±2	456±5	45±1	23872 ±9	629±12	93 ±7	24796±91	1012 ±445	32 ±17	25946 ±475	810±1907	6 ±22
60°C	1.9227E-6	0.99827	0	22135±14	866±24	30±1	22917±2	444 ±6	45±1	23886±5	643±9	94±2	24750 ±134	663 ±245	16 ±26	25407 ±851	964 ±1119	14±28
50°C	2.1439E-6	0.99783	0	22169±11	859±19	40±1	22924±2	434±6	45 ±1	23888 ±9	647±10	88 ±4	24740 ±33	575±289	10±24	25282 ±857	1033 ±1066	17 ±29
40°C	2.4062E-6	0.99728	0	22197 ±9	842 ±15	53±1	22931±3	422±6	44±1	23884±8	659±13	79±2	24823 ±195	693±252	16 ±15	25600 ±523	825 ±1028	9 ±17
30°C	2.6383E-6	0.99699	0	22214±7	817±11	69 ±1	22936±3	407 ±6	43±1	23880±7	703 ±12	69 ±2	24808 ±69	544±256	8±15	25425 ±643	977 ±1149	13±19
20°C	2.7048E-6	0.99741	0	22223±5	792 ±8	86±1	22938±2	387 ±5	41±1	23856±6	793 ±16	59±1	24873 <u>±</u> 93	515±236	6±11	25534 ±427	922 ±1144	10±15
10°C	2.5784E-6	0.99813	0	22221±3	762 ±6	98 ±1	22936±2	366±5	39±1	23782±10	953 ±36	50 ±2	24936 ±102	447 ±362	3 ±7	25546 ±503	882 ±1478	6 ±11
0°C	2.4067E-6	0.99859	0	22202±4	730±6	102 ±2	22934±2	337 ±5	33±1	23539±37	1355±71	56±3	25068±303	442 ±448	2 ±6	25710±225	737 <u>±1653</u>	5 ±10
Ч	Chi^2 /DoF	R^2	y0	xc1	w1	A1	xc2	w2	A2	xc3	w3	A3	xc4	W4	A4	xc5	w5	A5

Table S2: Gaussian modelling of Soret absorption bands for 2.5 μM ZnTPP in the P4448Cl IL prior to complete demetallation.

÷

4. Figure S4: Van't Hoff plot for $25\mu M$ porphyrin in P4448Cl ionic liquid

5. Modelling of Q band absorption spectra (on a cm⁻¹ scale) by a sum of Gaussian features; xc_i are the peak wavenumbers, w_i are the FWHM, A_i are the areas

2.5 μ M H₂TPP in IL; the Q band region, Figure S5 and Table S3

Figure S5: Modelling of absorption spectra at ten degree intervals; the Q band region for 2.5 μ M H₂TPP in the P4448Cl IL.

_																								_			
100°C	3.8049E-9	0.99871	0	15.57±14	1245±17	1.9±0.0	15339±3	331±8	0.5±0.0	16321±90	422±88	0.3±0.2	16825±16	522±77	1.4±0.3	17405±65	449 <u>+</u> 87	0.3±0.1	18195±3	598±8	2.5±0.0	19400±21	750±23	6.5±1.0	20519±351	1181±1031	3.4±3.6
000C	7.2827E-9	0.99743	0	14831±48	986±53	1.5±0.1	15342±5	438±18	0.9 ± 0.1	16311±616	646±437	0.4±1.0	16844±149	634±155	1.6±1.0	17502 <u>±</u> 45	359±92	0.1±0.1	18200±3	597±10	2.5±0.0	<u>19409±28</u>	748±29	6.5±1.2	20556±560	1172±1355	3.6±5.2
80°C	3.7977E-9	0.99857	0	15026±9	1107±10	2.9±0.0	15348±3	312±9	0.5±0.0	16361±107	475±95	0.4±0.2	16854±27	501±81	1.3±0.3	17417±59	438±82	0.3±0.1	18205±6	584±17	2.4±0.1	19411±4	732±26	5.8±0.7	20878±405	1863±853	6.5±3.6
70°C	5.908E-9	0.99768	0	14873±33	876±31	2.5±0.2	15352±5	476±22	1.1±0.2	16190±64	557±92	0.5±0.1	16848±19	574±47	1.5±0.2	17459±24	344±46	0.2±0.0	18210±3	582±8	2.3±0.0	19426±20	741±18	6.2±0.5	20445±160	914±442	2.5±1.6
0°C	8.2527E-9	0.99671	0	14753±81	791±57	2.3±0.5	15281±33	644±33	2.3±0.5	16190±31	447±51	0.4±0.1	16835±12	610±47	1.6±0.1	17489±30	356±65	0.2±0.1	18216±9	580±20	2.2±0.2	19411±6	709±41	5.1±1.1	20468±211	1529±729	4.7±2.2
50°C	8.8878E-9	0.99693	0	14621±536	835±250	1.4±2.7	15116±120	799±63	4.8±2.7	16206±33	438±48	0.5±0.1	16823±14	616±68	1.6±0.2	17489 <u>+</u> 44	410±93	0.2±0.1	18223±10	575±	2.1±0.2	19418±7	715±45	4.8±1.1	20609±305	1648±940	4.9±2.9
40°C	7.1832E-9	0.99835	0	14926±123	950±43	3.4±2.9	15053±16	759±65	4.6±2.9	16168±27	461±50	0.6±0.2	16802±21	685±77	1.8±0.2	17517 <u>+</u> 39	400±90	0.2±0.1	18229±12	582±27	1.9±0.2	19422±35	721±107	4.5±3.2	20578±106 5	1368±3483	3.9±11.5
30°C	5.4898E-9	0.99929	0	15000±5	733 <u>±</u> 15	7.9±0.7	14942±56	1158±60	2.7±0.8	16194±52	551±68	1.0±0.4	16816±50	656±116	1.6±0.4	17503±36	415±76	0.3±0.1	18226±13	599±34	1.8±0.2	19419±7	723±60	3.6±1.1	20861±773	1768±1629	5.7±6.5
20 ⁰ C	4.5787E-9	0.99967	0	14980±2	645±12	6.8±12	14982±6	960±24	6±0.7	16143±44	520±78	0.9±0.7	16692±126	798±247	2.0±0.9	17507 <u>±</u> 52	461±111	0.3±0.2	18231±7	618±22	1.5 ± 0.1	19421±49	740±51	3.1±1.0	20569±594	1165±1380	2.9±4.5
10°C	4.3258E-9	0.9998	0	14978±9	642±14	9.9±1.4	14937±96	970±36	5.8±1.9	16168±31	633±247	1.1±2.7	16603±659	1058±624	2.6±3.4	17448±12.8	254±43	0.1 ± 0.04	732±85	732±85	1.3 ± 0.4	19402±43	719±203	2.0±2.8	20666±185 0	1496±4380	4.0±14.5
0°C	4.5647E-9	0.99985	0	14967±3	604±9	9.5±0.8	14957±12	902±14	8.3±0.8	16130±272	613±170	1.8±3.0	16614±438	665±533	1.6±3.4	17381±149	620±241	0.6±0.6	18259±30	740±100	1.1±0.2	19375±115	780±193	1.7±1.9	20664±1239	1351±2660	3.6±9.3
Р	Chi^2 /DoF	R^2	yo	xc1	w1	A1	xc2	w2	A2	xc3	w3	A3	xc4	w4	A4	xc5	w5	AS	xc6	w6	A6	xc7	w7	A7	xc8	w8	A8

Table S3: Modelling of absorption spectra (on a cm⁻¹ scale) in the Q band region at ten degree intervals by a sum of Gaussian features for 2.5 μ M H₂TPP in P4448Cl IL. The xc_i are the peak wavenumbers, w_i are the FWHM, A_i are the areas.

6. Absorption spectra of the purified ionic liquid as a function of temperature

Figure S6: Absorption spectrum of control P4448Cl ionic liquid. Measurements are performed under the same experimental conditions as reported for samples. The absorption band at 13300 cm⁻¹ is the $\Delta v = 5$ C–H stretching overtone of the alkyl substituents of the IL.²

2. Henry, B. R.; Greenlay, W. R. A., J. Chem. Phys. 1980, 72, 5516-5524.

7. Fluorescence decay profiles: 2.5μ M H₂TPP in undegassed P4448Cl ionic liquid at room temperature. Log₁₀(total counts) vs. time in ns. The solid line is the multiexponential fit. The bottom panel is the distribution of weighted residuals. The green curve is the instrument response function. The full set of data extracted from these decays is in Table 1 of the main text.

Figure S7A: Excitation in Soret J aggregate band at 458 nm, observation at 693 nm

Figure S7B: Excitation in Soret monomer band at 414 nm, observation at 716 nm

Figure S7C: Excitation in the Soret monomer/J dimer overlap region at 436 nm, observation at 693 nm

