Supplementary Information

Synergy between molybdenum nitride and gold leading to platinum-like activity for hydrogen evolution

Adina Morozan^a, Vincent Goellner^a, Andrea Zitolo^b, Emiliano Fonda^b,

Bruno Donnadieu^a, Deborah Jones^a, Frédéric Jaouen^{a*}

a. Institut Charles Gerhardt de Montpellier, UMR 5253 CNRS - Université Montpellier II, Agrégats, Interfaces et Matériaux pour l'Energie, Place Eugène Bataillon, 34095 Montpellier cedex 5, France

b. Synchrotron SOLEIL, L'Orme des Merisiers Saint-Aubin - BP 48, 91192 Gif-sur-Yvette, France

Bond	distance / Å	Coordination number, N	σ^2 / Å ²	ΔE ₀ / eV
	M	o3/20/80-Z8FA-105	0	
Mo-O	1.77 (3)	1.5	0.020 (4)	4.83
Mo-N	2.07 (2)	4.0	0.011 (2)	4.83
Mo-Mo	2.97 (2)	4.7	0.013 (2)	4.83
Mo-Mo	4.03 (2)	2.0	0.011 (2)	4.83
Mo-O	1.73 (2)	2.0(3)	0.012 (3)	2.70
Mo-O	1.73 (2)	2.0(3)	0.012 (3)	2.70
MO-N	2.05 (3)	3.5(4)	0.016 (4)	2.70
Mo-Mo	3.08 (3)	4.2(6)	0.020 (3)	2.70
10-1010	4.20(3)	2.0(4)	0.020 (3)	2.70
		γ -Mo ₂ N		
xpected inte	eratomic distance a	nd coordination num	bers for bulk γ-N	Mo ₂ N with c
paramet	ter 4.16 Å and havi	ng nitrogen atoms lo	, ocated in octahed	ral sites)
r		<i>oo</i>		
Mo-N	2.08	3		
Mo-Mo	2.94	12		
Mo Mo	4.16	6		

Table S2. Results from the fitting of the XPS narrow scan spectra									
	Mo _{3d}			N _{1s}		O _{1s}			
	Μοδ	Mo ^{IV}	Mo ^{VI}	Mo ₂ N & pyridinic	Pyrrolic	Oxidized	O ²⁻ (MoO)	C=O	С-О-С
	228.7	229.9	232.5	398.8	401.4	402.8	530.8	532.7	534.5
Mo3/20/80	(46.4)	(12.4)	(41.2)	(36.0)	(47.4)	(16.6)	(42.2)	(48.5)	(9.3)
- Z8FA -1050	1.2 at. %			2.6 at. %		4.7 at. %			
	228.8	230.1	233.3	398.4	401.3	402.7	530.7	532.6	534.5
Mo6/20/80	(43.4)	(15.3)	(41.3)	(74.8)	(22.2)	(3.0)	(59.5)	(35.1)	(5.4)
-Z8FA-1050		3.3 at. %			3.0 at. %			5.1 at. %	ó

For each sample, the first row gives the binding energy, BE, (in bold) and relative % (in brackets) for each species, while the second row reports the absolute atomic percentage for each element in the sample. For the Mo_{3d} signal, the BE of the Mo $3d_{5/2}$ level is given while the relative percentage corresponds to that of the Mo species assigned to that BE.

Table S3. Electrocatalytic activity for the HER in acid medium								
		Loading	E @ 1.0	Tafel				
Catalyst description	Electrolyte	(all elements)	mA·cm ⁻²	slope	Ref.			
		/ mg·cm ⁻²	/ mV <i>vs</i> .	/ mV·dec ⁻¹				
			RHE					
					This			
70 wt. % Pt/C	0.1 M HClO ₄	0.47	+12 (1)	42	work			
MoS ₂	$0.5 \text{ M H}_2\text{SO}_4$	300 nm MoS ₂	-160	?	[13]			
		layer						
MoS ₂ /graphene	$0.5 \text{ M H}_2 \text{SO}_4$	0.28	-100	41	[17]			
(<i>ca</i> 35 wt. % Mo)								
1T-MoS ₂	0.5 M H ₂ SO ₄	0.050	-160	40	[15]			
		(pure MoS ₂)						
chemically exfoliated 1T-	0.5 M H ₂ SO ₄	?	-140	43	[S1]			
MoS_2								
33 wt. % MoS ₂ /MWCNT	1.0 M H ₂ SO ₄	0.51	-150	40	[16]			
MoS ₂ /Au	0.5 M H ₂ SO ₄	10 ⁻³ (excl. Au)	-150	69	[45]			
30 wt. % Mo ₂ C/CNT	0.1 M HClO ₄	2.0	-63	55	[19]			
bulk Mo ₂ C	1.0 M H ₂ SO ₄	1.4	-150	56	[18]			
20 wt. % MoN/Vulcan	0.1 M HClO ₄	0.25	-260	54	[21]			
(Ni ₂ Mo ₃ N) _{0.3} +Mo ₂ N /	0.1 M HClO ₄	0.25	-150	36	[21]			
Vulcan (20 wt. % metal on								
Vulcan)								
δ-MoN/Vulcan (20 wt. %	0.1 M HClO ₄	0.25	-250	54	[21]			
metal on Vulcan)								
W ₂ C microspheres	1.0 M H ₂ SO ₄	?	-60	118	[S2]			
Mo3/20/80-Z8FA-1050			-255 ⁽²⁾	125				
Mo3/20/80-Z8FA-1050 / Au		0.80	-130 (3)	78				
Mo0/20/80-Z8FA-1050 / Au	0.1 M H ₂ SO ₄		-220 (3)	109	This			
		0.80			work			
Mo6/20/80-Z8FA-1050 / Au		(0.25 Au,	-20 (3)	67				
		estimated)						
$^{(1)}$ positive due to the absence of H ₂ in the electrolyte shifting unward the H ⁺ /H ₂ equilibrium potential:								
$^{(2)}$ Before and $^{(3)}$ after 1000 cycles at 100 mV·s ⁻¹ between -0.6 and +0.4 V vs. SCE								
\sim Before and \sim after 1000 cycles at 100 mV·s ⁻¹ between -0.6 and +0.4 V vs. SCE.								

Figure S1. X-ray photoelectron spectroscopy narrow scan spectra for Mo_{3d} , N_{1s} and O_{1s} in Mo3/20/80-Z8FA-1050

The filled circles represent the experimental data points and the dotted line the fitting. The Mo_{3p} contribution to the N_{1s} region is indicated by the dashed area. For a given core level, each colour identifies one species, with increasing BE in the order: blue, red, green.

Figure S2. Effect of potential limits during cycling on the activation of Mo6/20/80-Z8FA-1050

Left. HER polarization curves before and after 1000 cycles at 100 mV·s⁻¹ in the potential limits of **a**) +0.17 to +0.67 V *vs*. RHE, **c**) -0.33 to +0.67 V *vs*. RHE (scan rate 1 mV·s⁻¹). **Right.** Cyclic voltammograms for Mo6/20/80-Z8FA-1050 before and after 1000 cycles at 100 mV·s⁻¹ in the potential limits of **b**) +0.17 to +0.67 V *vs*. RHE, **d**) -0.33 to +0.67 V *vs*. RHE (scan rate 20 mV·s⁻¹)

1.0 M H₂SO₄ solution, rotating speed 1500 rpm, catalyst loading 800 $\mu g_{Mo/N/C} \cdot cm^{-2}$. The dotted line corresponds to the Pt/C catalyst (328 $\mu g_{Pt} \cdot cm^{-2}$). Potential corrected for the iR drop. The peaks labelled I/II are assigned to electrochemical hydrogen adsorption/desorption on Mo₂N while peaks III/IV are assigned to the reduction/oxidation of the passivated Mo₂N surface.

Figure S3. Tafel plots for the hydrogen evolution reaction on Mo-based catalysts (a, b) and N-doped carbon (c).

Same figure caption as Figure 3. The values of the Tafel slopes are indicated in $mV \cdot dec^{-1}$ in the graph. The current density is in absolute value, for a logarithmic-scale presentation.

Supplementary references

- S1. M. A. Lukowski et al, J. Am. Chem. Soc., 2013, 135, 10274-10277.
- S2. D. J. Ham, R. Ganesan and J. S. Lee, *Int. J. Hydrogen Energy*, 2008, **33**, 6865-6872.