Electronic Supplementary Material (ESI) for Physical Chemistry Chemical Physics. This journal is © the Owner Societies 2015

PCCP

ARTICLE

Cite this: DOI: 10.1039/x0xx00000x

Modification of catalytic properties of the Au₄ nanocluster for the conversion of methane-tomethanol: Synergic effects of metallic adatoms and defective graphene support

Received 00th January 2012, Accepted 00th January 2012

J. Sirijaraensre^{*a,b*} and J. Limtrakul^{*a,b,c,**}

DOI: 10.1039/x0xx00000x

www.rsc.org/

Table S1. ZPE-corrected relative energies of the system along the steps of the catalytic cycle for the partial oxidation of methane by N_2O over the graphenedeposited Au_5 catalyst. The energy of the isolated subsystems in their lowest-energy spin state is taken as zero.

<u>Starra</u>	Relative Ener	gy (kcal·mol ⁻¹)
Steps	Doublet spin-state	Quartet spin-state
Isolated systems	0.0	18.8
N ₂ O adsorption	-4.5	14.1
N ₂ O decomposition transition state (TS1)	11.6	21.7
N2 adsorption on Au5O	-9.2	-2.1
N ₂ desorption	-5.9	1.4
CH ₄ adsorption	-9.4	2.0
C-H bond activation transition state (TS2)	5.9	16.8
Intermediate of C-H bond activation	-32.8	-25.0
Two-centered recombination		•
C-O formation transition state (TS3)	7.2	10.6
One-centered recombination		•
CH_3 Shift transition state (TS3 _{B1})	-17.3	-10.1
IV _B intermediate	-20.1	-34.5
C-O formation transition state $(TS3_{B2})$	5.9	18.5
CH ₃ OH adsorption	-39.4	-20.6
CH ₃ OH desorption	-28.9	-10.1

Relative Energy (kcal·mol⁻¹) Steps Singlet spin-state Triplet spin-state Isolated systems 0.0 0.8 N₂O adsorption -4.6 -3.6 N₂O decomposition transition state (TS1) 9.2 11.1 N₂ adsorption on Au₄OPd -8.6 -9.6 N2 desorption -5.2 -6.0 CH₄ adsorption -10.0 -8.8 C-H bond activation transition state (TS2) 9.2 5.7 -33.9 -36.7 Intermediate of C-H bond activation **Two-centered recombination** 5.7 0.6 C-O formation transition state (TS3) **One-centered recombination** -18.4 CH₃ Shift transition state (TS3_{B1}) -17.4 -18.8 -19.3 IV_B intermediate C-O formation transition state (TS3_{B2}) 6.5 5.6 -41.1 -39.0 CH₃OH adsorption CH₃OH desorption -28.9 -28.1

Table S2. . ZPE-corrected relative energies of the system along the steps of the catalytic cycle for the partial oxidation of methane by N_2O over the graphenedeposited Au_4Pd catalyst. The energy of the isolated subsystems in their lowest-energy spin state is taken as zero.

Table S3. ZPE-corrected relative energies of the system along the steps of the catalytic cycle for the partial oxidation of methane by N_2O over the graphene-
deposited Au₄Pt catalyst. The energy of the isolated subsystems in their lowest-energy spin state is taken as zero.

	Relative Energy (kcal·mol ⁻¹)			
Steps	Singlet spin-state	Triplet spin-state		
Isolated systems	0.0	3.5		
N ₂ O adsorption	-4.6	-1.0		
N ₂ O decomposition transition state (TS1)	7.2	12.4		
N2 adsorption on Au4OPt	-11.3	-6.0		
N ₂ desorption	-8.1	-2.6		
CH ₄ adsorption	-10.5	-4.9		
C-H bond activation transition state (TS2)	7.2	7.9		
Intermediate of C-H bond activation	-35.2	-30.2		
Two-centered recombination				
C-O formation transition state (TS3)	6.5	3.3		
One-centered recombination				
CH ₃ Shift transition state (TS3 _{B1})	-19.6	-15.5		
IV _B intermediate	-21.6	-16.6		
C-O formation transition state (TS3 _{B2})	6.6	7.5		
CH ₃ OH adsorption	-41.2	-36.1		
CH ₃ OH desorption	-28.9	-25.4		

Table S4. Optimized geometries of complexes along the steps of the catalytic cycle for the N_2O decomposition over the Au_5 /graphene. The values in	
parenthesis are for the high-spin state. (Distances are in Angstroms)	

Parameters		Ste	ps	
_	Isolated systems	N ₂ O adsorption	TS1	N ₂ adsorption on OAu ₅
N-N	1.13	1.14	1.16	1.11
		(1.14)	(1.16)	(1.11)
N-O	1.18	1.19	1.74	
		(1.19)	(1.61)	
Au1-Au4	2.86	2.87	3.05	2.82
	(2.86)	(2.86)	(2.92)	(2.85)
Au1-O		3.23	2.02	2.07
		(3.22)	(2.07)	(2.15)
Au4-O				2.07
_				(2.15)

Table S5. Optimized geometries of complexes along the steps of the catalytic cycle for the partial oxidation of methane over the Au_5O /graphene. The values in parenthesis are for the high-spin state. (Distances are in Angstroms)

Parameters				Steps		
	Isolated systems	CH₄ adsorption	TS2	Intermediate IV	TS3	Methanol adsorption
C-H (methane)	1.09	1.09	1.29			
		(1.09)	(1.32)			
H-O		2.45	1.39	0.96	0.97	0.96
		(2.96)	(1.25)	(0.97)	(0.97)	(0.96)
Au1-Au4	2.82	2.82	3.02	3.06	2.95	2.88
	(2.85)	(2.88)	(2.90)	(2.90)	(2.94)	(2.86)
Au1-O	2.07	2.06	1.97	2.06	2.24	2.54
	(2.15)	(2.15)	(2.05)	(2.05)	(2.17)	(2.52)
Au4-O	2.07	2.07				
	(2.15)	(2.14)				
Au4-C			2.40	2.08	2.52	
			(2.44)	(2.07)	(2.85)	
C-O					2.06	1.43
					(2.13)	(1.43)

Table S6. Optimized geometries of complexes along the steps of the catalytic cycle for the formation of methanol through the one-centered recombinationtransition state over the Au_5O /graphene. The values in parenthesis are for the high-spin state. (Distances are in Angstroms)

Parameters		Steps	
	TS3 _{B1}	IV _B intermediate	TS3 _{B2}
H-O	0.96	0.97	0.97
	(0.97)	(0.96)	(0.97)
Au1-Au4	2.66	2.66	2.70
	(2.69)	(2.84)	(2.68)
Au1-O	2.11	2.10	2.22
	(2.11)	(2.24)	(2.23)
Au1-C	2.11	2.09	2.42
	(2.12)	(2.05)	(2.53)
Au4-C	3.14		
	(3.16)		
C-0			2.00
			(2.05)

Table S7. Optimized geometries of complexes along the steps of the catalytic cycle for the N_2O decomposition over the $Au_4Pd/graphene$. The values inparenthesis are for the high-spin state. (Distances are in Angstroms)

Parameters				
_	Isolated systems	N ₂ O adsorption	TS1	N ₂ adsorption on OAu ₄ Pd
N-N	1.13	1.14	1.16	1.11
		(1.14)	(1.16)	(1.11)
N-O	1.18	1.19	1.68	
		(1.19)	(1.63)	
Au1-Au4	2.85	2.85	3.04	2.91
	(2.81)	(2.81)	(3.11)	(2.99)
Au1-O		2.97	2.04	2.05
		(3.22)	(2.07)	(2.05)
Au4-O				2.09
_				(2.12)

Table S8. Optimized geometries of complexes along the steps of the catalytic cycle for the partial oxidation of methane over the Au₄OPd/graphene. The values in parenthesis are for the high-spin state. (Distances are in Angstroms)

Parameters				Steps		
	Isolated systems	CH₄ adsorption	TS2	Intermediate IV	T83	Methanol adsorption
C-H (methane)	1.09	1.09	1.30			
		(1.09)	(1.33)			
H-O		2.50	1.35	0.96	0.97	0.96
		(2.54)	(1.25)	(0.97)	(0.97)	(0.97)
Au1-Au4	2.91	2.91	3.00	2.91	2.98	2.86
	(2.99)	(3.00)	(2.98)	(2.95)	(2.95)	(2.73)
Au1-O	2.04	2.04	1.99	2.06	2.25	2.46
	(2.04)	(2.04)	(2.04)	(2.04)	(2.17)	(2.65)
Au4-O	2.09	2.11				
	(2.13)	(2.17)				
Au4-C			2.43	2.08	2.52	
			(2.43)	(2.08)	(2.79)	
C-O					2.04	1.43
					(2.16)	(1.42)

Table S9. Optimized geometries of complexes along the steps of the catalytic cycle for the formation of methanol through the one-centered recombination transition state over the $Au_4OPd/graphene$. The values in parenthesis are for the high-spin state. (Distances are in Angstroms)

Parameters		Steps			
	TS3 _{B1}	IV _B intermediate	TS3 _{B2}		
H-O	0.96	0.97	0.97		
	(0.97)	(0.97)	(0.97)		
Au1-Au4	2.67	2.67	2.67		
	(2.68)	(2.66)	(2.66)		
Au1-O	2.11	2.11	2.20		
	(2.14)	(2.09)	(2.20)		
Au1-C	2.12	2.10	2.42		
	(2.09)	(2.10)	(2.42)		
Au4-C	3.17				
	(3.43)				
C-0			2.02		
			(2.02)		

Table S10. Optimized geometries of complexes along the steps of the catalytic cycle for the N_2O decomposition over the $Au_4Pt/graphene$. The values inparenthesis are for the high-spin state. (Distances are in Angstroms)

Parameters		Ste	DS	
_	Isolated systems	N ₂ O adsorption	TS1	N ₂ adsorption on OAu ₄ Pt
N-N	1.13	1.14	1.16	1.11
		(1.14)	(1.16)	1.11
N-O	1.18	1.19	1.71	
		(1.19)	(1.64)	
Au1-Au4	2.87	2.88	3.03	2.80
	(2.83)	(2.83)	(2.97)	(2.98)
Au1-O		2.99	2.03	2.07
		(3.16)	(2.05)	(2.04)
Au4-O				2.11
_				(2.12)

Table S11. Optimized geometries of complexes along the steps of the catalytic cycle for the partial oxidation of methane over the Au₄OPt/graphene. The values in parenthesis are for the high-spin state. (Distances are in Angstroms)

Parameters	Steps					
	Isolated systems	CH₄ adsorption	TS2	Intermediate IV	TS3	Methanol adsorption
C-H (methane)	1.09	1.09 (1.09)	1.29 (1.32)			
H-O		2.19 (2.26)	1.37 (1.27)	0.97 (0.97)	0.97 (0.97)	0.96 (0.96)
Au1-Au4	2.79 (2.97)	2.80 (2.98)	3.03 (2.99)	3.32 (3.02)	2.96 (2.90)	2.88 (2.82)
Au1-O	2.07 (2.04)	2.07 (2.05)	1.98 (2.03)	2.04 (2.03)	2.27 (2.21)	2.50 (2.58)
Au4-O	2.11 (2.12)	2.11 (2.12)	· · · · · ·	, , , , , , , , , , , , , , , , , , ,	, , ,	, , , , , , , , , , , , , , , , , , ,
Au4-C			2.41 (2.42)	2.08 (2.09)	2.52 (2.66)	
C-0			. /	, <i>1</i>	2.03 (2.06)	1.43 (1.43)

Table S12. Optimized geometries of complexes along the steps of the catalytic cycle for the formation of methanol through the one-centered recombination transition state over the Au_4OPt /graphene. The values in parenthesis are for the high-spin state. (Distances are in Angstroms)

Parameters	Steps		
	TS3 _{B1}	IV _B intermediate	TS3 _{B2}
H-O	0.96	0.97	0.97
	(0.97)	(0.97)	(0.97)
Au1-Au4	2.65	2.65	2.66
	(2.67)	(2.66)	(2.66)
Au1-O	2.13	2.12	2.22
	(2.14)	(2.09)	(2.19)
Au1-C	2.11	2.09	2.44
	(2.12)	(2.10)	(2.42)
Au4-C	3.18		
	(3.28)		
C-0			2.01
			(2.03)

Fig. S1. Different views of the ground-state structure of Au₅/graphene.

Fig. S2. Different views of the ground-state structure of the $Au_4Pd/graphene$.

Gamplana	Systems			
Complexes	Au ₅ /graphene	Au ₄ Pd/graphene	Au ₄ Pt/graphene	
Al	E _{deform} = 10.9 kcal/mol	E _{deform} = 10.2 kcal/mol	E _{deform} = 8.9 kcal/mol	
A2	E _{deform} = 6.0 kcal/mol Au Au Au	E _{deform} = 75.1 kcal/mol Pd Aw Aw Aw	E _{deform} = 73.0 kcal/mol	
A3	E _{deform} = 6.2 kcal/mol	E _{deform} = 69.9 kcal/mol	E _{deform} = 107.1 kcal/mol	
Α4	E _{deform} = 3.5 kcal/mol			

Fig. S5. Different configurations of the ground-state structure of the $Au_s/graphene$, $Au_4Pd/graphene$, and $Au_4Pt/graphene$, respectively. The deformation energies (E_{deform}) as differences of their energies and the energy of their relating system in Fig. 1. The positive values indicate the instability of the complex as compared with the structure in Fig. 1.

Fig. S6. Vibrational modes corresponding to the imaginary frequency at the transition states for partial oxidation of methane by N_2O as oxidant over the Au₅/graphene material. The superscript indicates the ground state of the transition state complexes.

Fig. S7. Vibrational modes corresponding to the imaginary frequency at the transition states for partial oxidation of methane by N_2O as oxidant over the $Au_4Pd/graphene$ material. The superscript indicates the ground state of the transition state complexes.

Fig. S8. Vibrational modes corresponding to the imaginary frequency at the transition states for partial oxidation of methane by N_2O as oxidant over the $Au_4Pt/graphene$ material. The superscript indicates the ground state of the transition state complexes.

Fig. S9. Different configurations of N_2O adsorption: (a) on the Au_5 /graphene, Au_4Pd /graphene, and Au_4Pt /graphene, respectively and (b) on the graphene. Energies are the adsorption energy of the complexes.

Fig. S10. Complete energetic profiles (kcal·mol·1) along the low-spin state (blue solid line) and the high-spin state (green solid line) of the Au-doped graphene catalyst for the partial oxidation of methane and the corresponding geometries.

Fig. S11. Complete energetic profiles (kcal-mol⁻¹) along the low-spin state (brown solid line) and the high-spin state (orange solid line) of the unsupported Au₄Pd cluster for the partial oxidation of methane and the corresponding geometries.

ARTICLE