Supporting Information

For the Article entitled

"The ratio and topology effects of benzodithiophene donor fragment to benzooxadiazole acceptor fragment on the optoelectronic properties of donor molecules toward solar cells materials".

> Shamsa Bibi and Jingping Zhang * Faculty of Chemistry, Northeast Normal University, Changchun, 130024, PR China

**Corresponding author: Fax:* +86-431-85684937 *Tel:* +86-431-85099372 *E-mail:* jpzhang@nenu.edu.cn

Contents:

- > SI: Optimized Geometry Structures for the DA_n , D_2A_n , D_3A_n and D_4A_n Molecules
- SII: Frontier Molecular orbital (FMOs) of DA_n Designed Donor Molecules
- > SIII: FMOs of the D_2A_n , D_3A_n and D_4A_n Designed Donor Molecules
- ➤ SIV: Absolute Values of The Bond Length
- ➢ SV: FMOs Energy Data
- SVI: Total Molecular Energy of the Designed Molecules
- > SVII: Absorption Properties
- > **SVIII**: Diploe Moments (μ)
- SIX: Molecular Orbital Compositions (in percentage)
- **SX**: Chemical Structure of PDIs
- SXI: Absorption Spectrum
- **SXII**: Reorganization Energy Values
- SXIII: Long Range Functionals Comparison

SI: Optimized Geometry Structures for the DA_n , D_2A_n , D_3A_n and D_4A_n Molecules

Fig. S1a Optimized geometry structures of the DA_n molecules.

Fig. S1b Optimized geometry structures of the D_3A_n and D_4A_n molecules.

Fig. S1c Optimized geometry structures of the D_2A_n donor molecules.

SII: Frontier Molecular orbital (FMOs) of DA_n Designed Molecules

Fig. S2a FMOs energy level diagram for DA group molecules.

Fig. S2b FMOs energy level diagram for DA₃ group molecules.

Fig. S2c FMOs energy level diagram for DA₂ group molecules.

Fig. S2d FMOs energy level diagram for DA_4 group molecules

Fig. S2e HOMO and LUMO orbitals of DA_n and D_2A_n molecules.

SIII: Frontier Molecular orbitals (FMOs) of the D_2A_n , D_3A_n and D_4A_n Designed Molecules

Fig. S3a FMOs energy level diagram for D₂A group molecules.

Fig. S3b FMOs energy level diagram for D₂A group molecules.

Page 8 of 24

Fig. S3c FMOs energy level diagram for D_2A_3 group molecules.

Fig. S3d FMOs energy level diagram for D_2A_4 group molecules.

Fig. S3e FMOs energy level diagram for D_2A_4 group molecules.

Fig. S3f FMOs energy level diagram for D_2A_5 group molecules.

Fig. S3g FMOs energy level diagram for D_2A_6 and D_2A_7 group molecules.

Fig. S3h FMOs energy level diagram for D_3A_n molecules.

Fig. S3i FMOs energy level diagram for D_4A_n molecules.

Fig. S3j FMOs energy level diagram for D₄A₄S₇-L₄ molecule.

SIV: Absolute Values of The Bond Length

Fig. S4a Absolute values of the bond length differences between the neutral and ionic states for DA_n designe molecules.

Fig. S4b Absolute values of the bond length differences between the neutral and ionic states for $D_2A_5S_6$ - P_2L_3 , D_3A_n and D_4A_n designed molecules.

Fig. S4c Absolute values of the bond length differences between the neutral and ionic states for D_2A_n designe molecules.

SV: FMOs Energy Data

Table S1 Calculated energy data (in eV) of the FMOs of the DA_n designed donor molecules. (E $_{HOMO}$ = HOMO energy levels; E $_{LUMO}$ = LUMO energy levels; and Eg = E $_{LUMO}$ - E $_{HOMO}$).

Name	E _{HOMO} (eV)	E _{LUMO} (eV)	Eg (eV)
DAS-L	-5.80	-2.63	3.17
DAS-P	-5.70	-2.56	3.14
$DA_2S_2-L_2$	-5.82	-2.85	2.97
$DA_2S_2-P_2$	-5.66	-2.89	2.77
DA ₂ S ₂ -PL	-5.75	-2.83	2.92
$DA_3S_3-P_2L$	-5.72	-3.03	2.69
$DA_3S_3-PL_2$	-5.80	-3.00	2.80
DA_4S_4 - P_2L_2	-5.75	-3.18	2.57

Name	E _{HOMO} (eV)	E _{LUMO} (eV)	Eg (eV)
D ₂ AS ₂ -L-I	-5.61	-2.91	2.7
D_2AS_2 -L-II	-5.81	-2.80	3.01
D_2AS_2 -L-III	-5.58	-2.71	2.87
D_2AS_2-P	-5.60	-2.65	2.95
$D_2A_3S_4$ - L_3	-5.68	-3.13	2.55
$D_2A_3S_4$ - P_2L	-5.67	-3.15	2.52
$D_2A_3S_4$ - PL_2	-5.68	-3.14	2.54
$D_2A_4S_5$ - PL_3	-5.70	-3.23	2.47
$D_2A_4S_5\text{-}P_2L_2\text{-}I$	-5.69	-3.24	2.45
$D_2A_4S_5$ - P_3L	-5.68	-3.24	2.44
$D_2A_4S_5$ - P_2L_2 -II	-5.63	-2.99	2.64
$D_2A_4S_5-P_4$	-5.68	-3.13	2.55
$D_2A_5S_6-P_4L$	-5.71	-3.30	2.41
$D_2A_5S_6$ - P_2L_3	-5.72	-3.29	2.43
$D_2A_6S_7$ - P_4L_2	-5.59	-3.21	2.38
$D_2A_7S_8-P_4L_3$	-5.71	-3.43	2.28

Table S2 Calculated energy data (in eV) of the FMOs of the D_2A_n designed donor molecules.

Table S3 Calculated energy data (in eV) of the FMOs of the D_3A_n and D_4A_n designed donor molecules.

Name	HOMO (eV)	LUMO (eV)	Eg (eV)
$D_3A_3S_5-P_2L$	-5.57	-3.14	2.43
$D_3A_4S_6\text{-}P_2L_2$	-5.64	-3.20	2.44
$D_4A_3S_6-P_2L$	-5.55	-3.14	2.41
$D_4A_4S_8\text{-}P_2L_2$	-5.65	-3.22	2.43
$D_4A_4S_7$ - L_4	-5.59	-3.22	2.37

SVI: Total Molecular Energy of the Designed Molecules

Table S4 Total energies of the DA_n investigated molecules in KJ/mol.

Name	Total Energy	Name	Total Energy
DAS-L	-4385626.77	DA ₂ S ₂ -PL	-5672352.90
DAS-P	-4385625.80	$DA_3S_3-P_2L$	-6959079.03
$DA_2S_2-L_2$	-5672351.93	$DA_3S_3-PL_2$	-6959079.03
$DA_2S_2-P_2$	-5672352.90	DA_4S_4 - P_2L_2	-8245693.24

Table S5 Total energies of the D_2A_n , D_3A_n and D_4A_n investigated molecules in KJ/mol.

Name	Total Energy	Name	Total Energy	Name	Total Energy
D ₂ AS ₂ -L-I	-7681166.38	$D_2A_4S_5-PL_3$	-11541421.00	$D_2A_6S_7-P_4L_2$	-14114940.80
D ₂ AS ₂ -L-II	-7681161.56	$D_2A_4S_5-P_2L_2-$	-11541421.97	$D_2A_7S_8$ - P_4L_3	-15401679.48
		Ι			
D ₂ AS ₂ -L-III	-7681170.24	$D_2A_4S_5-P_3L$	-11541427.76	$D_3A_3S_5-P_2L$	-13550193.00
D_2AS_2-P	-7681174.10	$D_2A_4S_5-P_2L_2-$	-11541425.83	$D_3A_4S_6-P_2L_2$	-14836943.25
		II			
$D_2A_3S_4$ - L_3	-10254669.78	$D_2A_4S_5-P_4$	-11541433.54	$D_4A_3S_6-P_2L$	-16845712.36
$D_2A_3S_4$ - P_2L	-10254670.75	$D_2A_5S_6-P_4L$	-12828183.80	$D_4A_4S_8$ - P_2L_2	-18329071.69
$D_2A_3S_4$ - PL_2	-10254670.75	$D_2A_5S_6-P_2L_3$	-12828176.08	$D_4A_4S_7-L_4$	-16845697.89

SVII: Absorption Properties

Table S6 Calculated excitation energies (Ex), wavelength (λ_{abs}), oscillator strength (f), and composition in terms of molecular orbitals with related character (H = HOMO, L = LUMO) for DA₄S₄-P₂L₂, D₂A₆S₇-P₄L₂, D₂A₇S₈-P₄L₃, D₃A₄S₆-P₂L₂, D₄A₄S₈-P₂L₂ and D₄A₄S₇-L₄.

Donor Name	Transition state	Ex (eV)	$\lambda_{abs} (nm)$	f (a.u.)	Assignment
$DA_4S_4-P_2L_2$	S0→S1	2.24	554	0.20	H→L
	S0→S4	2.69	460	1.44	H-1→L
	S0→S7	3.15	394	0.33	$H-1 \rightarrow L+1$
	S0→S17	3.91	317	0.38	$H-1 \rightarrow L+4, H \rightarrow L+5.$
Do A ST-PIL o	S0→S1	2.05	605	1 32	Н⊸І
$D_2 R_0 S / T_4 D_2$	$S0 \rightarrow S5$	2.05	495	0.33	$H \rightarrow L + 2$
	$S0 \rightarrow S7$	2.61	474	1.64	$H^{-2}\rightarrow L, H\rightarrow L^{+2}.$
$D_2A_7S_8-P_4L_3$	S0→S1	1.93	642	2.27	H→L
- ,	S0→S5	2.43	510	1.88	H-2 \rightarrow L, H-1 \rightarrow L+1
	S0→S15	2.91	426	0.42	H-3 \rightarrow L+3, H-2 \rightarrow L+2.
D.A.S. P.I.	S0	2.00	617	1 35	H_J
$D_{3}A_{4}S_{6}-\Gamma_{2}L_{2}$	$50 \rightarrow 51$	2.00	520	0.70	
	$30 \rightarrow 33$	2.54	330	0.79	$\Pi \rightarrow L^{+1}, \Pi^{-1} \rightarrow L$
	$50 \rightarrow 50$	2.39	4/9	0.23	$\Pi - I \rightarrow L + I, \Pi \rightarrow L + 3$
	$50 \rightarrow 58$	2.00	403	0.83	Π -3 \rightarrow L, Π -2 \rightarrow L+1
	$50 \rightarrow 512$	2.80	434	0.10	$H-4 \rightarrow L, H-4 \rightarrow L+1$
	50→521	3.34	3/1	0.23	Π -0 \rightarrow L, Π -4 \rightarrow L+2.
$D_4A_4S_8$ - P_2L_2	S0→S1	1.97	629	0.37	$H \rightarrow L, H-1 \rightarrow L+1$
	S0→S2	2.19	566	1.30	$H-1\rightarrow L+2, H\rightarrow L$
	S0→S4	2.25	549	0.97	$H-1 \rightarrow L+1, H \rightarrow L+1$
	S0→S5	2.27	546	0.51	$H-1 \rightarrow L+1, H-1 \rightarrow L+2$
	S0→S6	2.32	534	0.32	$H\rightarrow L+2, H\rightarrow L$
	S0→S9	2.46	503	1.18	$H-2\rightarrow L+1, H-1\rightarrow L+2$
	S0→S10	2.48	498	0.28	$H-3\rightarrow L$, $H-2\rightarrow L+1$, $H-$
	~~~~~				$1 \rightarrow L+2$
	$S0 \rightarrow S13$	2.58	479	0.32	$H-2\rightarrow L+2$ , $H\rightarrow L+3$
	$S0 \rightarrow S16$	2.73	454	0.16	$H-3 \rightarrow L+3, H-3 \rightarrow L+1$
	S0→S18	2.80	443	0.32	$H-5 \rightarrow L, H-5 \rightarrow L+1.$
$D_4A_4S_7$ - $L_4$	S0→S1	1.96	631	6.36	H→L

S0→S4	2.41	514	0.54	$H-1 \rightarrow L+1, H \rightarrow L+2$
S0→S6	2.49	496	0.18	$H-1 \rightarrow L+1, H \rightarrow L$
S0→S12	2.78	446	0.50	$H-5\rightarrow L, H-4\rightarrow L$

#### SVIII: Diploe Moments (µ)

**Table S7** Dipole moments values for the all DA_n, D₂A_n, D₃A_n and D₄A_n investigated molecules.

Name	μ (Debye)	Name	μ (Debye)
DAS-L	3.94	$D_2A_4S_5-PL_3$	4.86
DAS-P	3.67	$D_2A_4S_5$ - $P_2L_2$ -I	7.48
$DA_2S_2-L_2$	0.41	$D_2A_4S_5-P_3L$	5.47
$DA_2S_2-P_2$	0.10	$D_2A_4S_5$ - $P_2L_2$ -II	0.53
$DA_2S_2$ -PL	5.17	$D_2A_4S_5-P_4$	0.72
$DA_3S_3-P_2L$	3.72	$D_2A_5S_6-P_4L$	3.65
$DA_3S_3-PL_2$	3.64	$D_2A_5S_6-P_2L_3$	11.36
$DA_4S_4$ - $P_2L_2$	0.20	$D_2A_6S_7-P_4L_2$	0.52
$D_2AS_2$ -L-I	3.62	$D_2A_7S_8-P_4L_3$	3.83
$D_2AS_2$ -L-II	4.97	$D_3A_3S_5-P_2L$	3.83
$D_2AS_2$ -L-III	4.03	$D_3A_4S_6-P_2L_2$	3.90
$D_2AS_2-P$	4.10	$D_4A_3S_6-P_2L$	5.04
$D_2A_3S_4$ - $L_3$	3.47	$D_4A_4S_8$ - $P_2L_2$	5.81
$D_2A_3S_4$ - $P_2L$	3.51	$D_4A_4S_7$ - $L_4$	1.42
$D_2A_3S_4$ - $PL_2$	3.09		

Dipole moments ( $\mu$ ) of all designed molecules are summarized in supporting information. We made a comparison of  $\mu$  values with optical properties i.e., the largest intensity of absorption and  $\lambda_{max}$  wavelength for all designed molecules. Among the DA_n, D₂A_n, D₃A_n and D₄A_n molecules, almost all the molecules show inverse relation of  $\mu$  values with respect to the largest intensity of absorptions, while few exception have also been observed in the case of D₂A₅S₆-P₄L, D₂A₅S₆-P₂L₃, D₂A₆S₇-P₄L₂, D₂A₇S₈-P₄L₃ molecules and DA₃ group as  $\mu$  values are directly proportional to largest intensity of absorption because of different shapes. The order of intensity and  $\mu$  trends for DA_n molecules are of DA₄S₄-P₂L₂> DA₂S₂-P₂> DA₃S₃-PL₂> DA₂S₂-P₂> DA₂S₂-P₂>

Among DA_n, D₂A_n, D₃A_n and D₄A_n molecules, only some molecules like D₂A₆S₇-P₄L₂, D₂A₇S₈-

 $P_4L_3$  and all members of  $D_2A_4$  group demonstrate direct relation with respect to  $\lambda_{max}$ .

#### SIX: Molecular Orbital Compositions (in percentage)

**Table S8** Molecular orbital composition in percentage from  $\pi$ -spacer and donor-acceptor fragments DA_n, D₂A_n, D₃A_n and D₄A_n designed donor molecules.

Molecule	Energy Level	Acceptor	π-spacer	Donor
		Fragments		Fragments
DACI	HOMO	11	9	80
DAS-L	LUMO	80	8	12
DAGD	HOMO	12	11	77
DAS-P	LUMO	80	8	12
	HOMO	19	17	64
$DA_2S_2-L_2$	LUMO	68	11	21
	HOMO	20	18	62
$DA_2S_2-P_2$	LUMO	69	13	18
	HOMO	18	16	66
$DA_2S_2$ -PL	LUMO	69	11	10
	HOMO	22	20	58
$DA_3S_3-P_2L$	LUMO	63	14	23
	HOMO	21	19	60
$DA_3S_3-PL_2$	LUMO	62	13	25
	НОМО	25	22	53
$DA_4S_4$ - $P_2L_2$	LUMO	57	16	27

Molecule	Energy Level	Acceptor Fragments	Ethyne (π-spacer)	Donor Fragments
D ₂ AS ₂ -L-I	НОМО	17	18	65
	LUMO	62	15	23
D ₂ AS ₂ -L-II	HOMO	14	10	76
	LUMO	71	11	18
D ₂ AS ₂ -L-III	HOMO	5	15	80
	LUMO	68	10	22
$D_2AS_2-P$	HOMO	3	13	84
	LUMO	77	8	15
$D_2A_3S_4-L_3$	HOMO	21	22	57
	LUMO	58	16	26
$D_2A_3S_4-P_2L$	HOMO	19	20	61
	LUMO	59	16	25
$D_2A_3S_4-PL_2$	HOMO	20	21	59

	LUMO	59	16	25
$D_2A_4S_5-PL_3$	НОМО	22	22	56
	LUMO	57	17	26
$D_2A_4S_5-P_2L_2-I$	НОМО	22	22	56
	LUMO	57	17	26
$D_2A_4S_5-P_3L$	НОМО	22	22	56
	LUMO	57	17	26
$D_2A_4S_5-P_2L_2-II$	НОМО	16	15	69
	LUMO	58	10	32
$D_2A_4S_5-P_4$	НОМО	15	20	65
	LUMO	56	15	29
$D_2A_5S_6-P_4L$	НОМО	22	22	56
	LUMO	56	17	27
$D_2A_5S_6-P_2L_3$	НОМО	22	23	55
	LUMO	55	17	28
$D_2A_6S_7-P_4L_2$	НОМО	17	23	60
	LUMO	50	17	33
$D_2A_7S_8-P_4L_3$	HOMO	25	24	51
	LUMO	53	19	28
$D_3A_3S_5-P_2L$	НОМО	17	20	63
	LUMO	<b>59</b>	16	25
$D_3A_4S_6-P_2L_2$	НОМО	18	20	62
	LUMO	58	16	26
$D_4A_3S_6-P_2L$	HOMO	17	19	64
	LUMO	57	17	26
$D_4A_4S_8$ - $P_2L_2$	HOMO	18	20	62
	LUMO	56	16	28
$D_4A_4S_7$ - $L_4$	НОМО	20	23	57
	LUMO	56	17	27

# SX: Chemical Structure of PDIs



 $\mathbf{PDI1} = -(\mathrm{CH}_2)_7 \ \mathrm{CH}_3$ 

**PDI9** =  $-CH(n-C_8H_{17})_2$ 

Fig. S6 Chemical structures of the PDIs.

Table S9 The Calculated energy data (in eV) of the FMOs of the PDI1 and PDI9 acceptor molecules.

Name	HOMO (eV)	LUMO (eV)	Eg (eV)
PDI1	-6.75	-4.00	2.75
PDI9	-6.76	-3.97	2.79

#### SXI: Absorption spectrum





Name	$\lambda_{e} (eV)$	$\lambda_{h} (eV)$	Name	$\lambda_{e} (eV)$	$\lambda_{h} (eV)$
DAS-L	0.258	0.214	$D_2A_4S_5-PL_3$	0.142	0.142
DAS-P	0.258	0.137	$D_2A_4S_5$ - $P_2L_2$ -I	0.157	0.136
$DA_2S_2-L_2$	0.170	0.201	$D_2A_4S_5-P_3L$	0.135	0.113
$DA_2S_2-P_2$	0.203	0.128	$D_2A_4S_5$ - $P_2L_2$ -II	0.101	0.151
$DA_2S_2$ -PL	0.169	0.160	$D_2A_4S_5-P_4$	0.103	0.133
$DA_3S_3-P_2L$	0.158	0.130	$D_2A_5S_6-P_4L$	0.111	0.100
$DA_3S_3-PL_2$	0.152	0.168	$D_2A_5S_6-P_2L_3$	0.131	0.134
$DA_4S_4$ - $P_2L_2$	0.134	0.133	$D_2A_6S_7-P_4L_2$	0.102	0.149
$D_2AS_2$ -L-I	0.213	0.191	$D_2A_4S_5$ - $PL_3$	0.117	0.111
D ₂ AS ₂ -L-II	0.211	0.112	$D_3A_3S_5-P_2L$	0.125	0.111
D ₂ AS ₂ -L-III	0.194	0.193	$D_{3}A_{4}S_{6}-P_{2}L_{2}$	0.111	0.106
$D_2AS_2-P$	0.151	0.189	$D_4A_3S_6-P_2L$	0.108	0.104
$D_2A_3S_4-L_3$	0.134	0.151	$D_4A_4S_8$ - $P_2L_2$	0.100	0.101
$D_2A_3S_4$ - $P_2L$	0.161	0.140	$D_4A_4S_7$ - $L_4$	0.114	0.115
$D_2A_3S_4$ -PL ₂	0.145	0.148			

**Table S10** Electron ( $\lambda_e$ ) and hole ( $\lambda_h$ ) reorganization energy values for  $DA_n$ ,  $D_2A_n$ ,  $D_3A_n$  and  $D_4A_n$  designed molecules.

#### SXIII: Long Range Functional Comparison

**Table S11** Calculated excitation energies (Ex), wavelength ( $\lambda_{abs}$ ) and oscillator strength (*f*) based on TDDFT at the different levels of theory.

Method	DA ₄ S ₄ -P ₂ L ₂		$D_2A_5S_6-P_4L$		D ₂ A ₅ S ₆ -P ₂ L ₃	
TD-PBE0/6-31G(d)	λ _{max} (nm) 554	f (a.u.) 0.92	λ _{max} (nm) 607	f (a.u.) 1.35	λ _{max} (nm) 603	f (a.u.) 2.84
TD-WB97XD/6-31G(d)	428	1.31	444	2.17	443	3.68
TD-CAM-B3LYP/6- 31G(d)	440	1.24	459	2.12	460	3.55

# The End