Electronic Supplementary Information

Submicrometer-scale polyaniline colloidal spheres: photopolymerization preparation using fluorescent carbon nitride dots as a photocatalyst

Xiaoyun Qin,^a Sen Liu,^a Wenbo Lu,^a Haiyan Li,^a Guohui Chang,^a Yingwei Zhang,^a

Jingqi Tian,^{ab} Yonglan Luo,^a Abdullah M. Asiri,^{cd} Abdulrahman O. Al-Youbi^{cd} and

Xuping Sun*acd

^{*a*} State Key Lab of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Changchun 130022, Jilin, China

^b Graduate School of the Chinese Academy of Sciences, Beijing 100039, China

^c Chemistry Department, Faculty of Science, King Abdulaziz University, Jeddah

21589, Saudi Arabia

^d Center of Excellence for Advanced Materials Research, King Abdulaziz University, Jeddah 21589, Saudi Arabia

*To whom correspondence should be addressed. Tel/Fax: +86-431-85262065. E-mail: sunxp@ciac.jl.c

Experimental Section

 CCl_4 , 1,2-ethylenediamine (EDA), AgNO₃ and H₂O₂ were purchased from Aladin Ltd. (Shanghai, China)., 4-nitrophenol (4-NP) was purchased from Sinopharm Chemical Reagent Co. Ltd and sodium borohydride (NaBH₄) were purchased from Tianjin Fuchen Chemical Corp. All the chemicals were used as received without further purification. The water used throughout all experiments was purified through a Millipore system. Phosphate buffer saline (PBS) was prepared by mixing stock solutions of NaH₂PO₄ and Na₂HPO₄ and a fresh solution of H₂O₂ was prepared daily.

The fluorescent CNDs were prepared follow our previous work by polymerization of CCl₄ and EDA under reflux heating. In a typical synthesis, 0.69 mL of EDA was added to 1 mL of CCl₄ solution. After that, the mixture was heated to 80 °C for 60 min. The excess precursors and resulting small molecules were removed by dialyzing against water through a dialysis membrane for 1 day. The resultant CNDs were dispersed in water for further characterization and use.

The synthesis of PANICSs was carried out in a quartz cuvette using CNDs as photocatalyst. 20 μ L of CNDs, 20 μ L of aniline were injected into 3 mL of HCl (0.3 M) aqueous solution in the quartz cuvette. The mixture after ultrasonic disperse for 10 min was placed under high-pressure mercury lamp (50 W) for 2 h to get brown solution.

Ultraviolet-visible (UV-vis) absorption spectra were recorded on a UV5800 spectrophotometer. Scanning electron microscopy (SEM) measurements were made on a XL30 ESEM FEG scanning electron microscope at an accelerating applied potential of 20 kV. Transmission electron microscopy (TEM) measurements were made on a HITACHI H-8100 EM (Hitachi, Tokyo, Japan) with an accelerating applied potential of 200 kV. The sample for TEM characterization was prepared by placing a drop of the dispersion on carbon-coated copper grid and dried at room temperature. Fourier transform infrared (FTIR) spectroscopic measurements were taken on a Bruker Vertex 70 Fourier transform spectrometer. Fluorescence emission spectra were recorded on a Shimadzu RF-5301 spectroflurophotometer (Shimadzu Corporation, Kyoto, Japan).

Electrochemical measurements were performed with a CHI 660D electrochemical analyzer (CH Instruments, Inc., Shanghai). A conventional three-electrode cell was used, including a glassy carbon electrode (GCE, geometric area = 0.07 cm^2) as the working electrode, a Ag/AgCl (3 M KCl) electrode as the reference electrode, and platinum foil as the counter electrode. All potentials given in this work were referred to the Ag/AgCl electrode. All the experiments were carried out at ambient temperature. The suspension of AgNPs-PANICSs was dropped onto the pre-polished mirror like surface of GCE. Chitosan (0.5 wt %) was used as fixative to form a strong film to modify the electrode.

Fig. S1 FTIR spectra of the resulting photopolymerization product.

Fig. S2 UV-vis absorption spectra of the aqueous dispersions of CNDs.

Fig. 3 PL emission spectra of CNDs-aniline mixture (a) before and (b) after 2-h UV irradiation.

Fig. S4 The corresponding energy-dispersed spectrum of PANICSs after incubation with an aqueous AgNO₃ solution.