SUPPORTING INFORMATION

MOLECULAR RUTHENIUM COMPLEXES ANCHORED ON MAGNETIC NANOPARTICLES THAT ACT AS POWERFUL AND MAGNETICALLY RECYCLABLE STEREOSPECIFIC EPOXIDATION CATALYSTS

LYDIA VAQUER,^A PAOLA RIENTE,^A XAVIER SALA,^B SUSANNA JANSAT^C, JORDI BENET-BUCHHOLZ,^A ANTONI LLOBET,^{*,A,B} MIQUEL A. PERICÀS.^{*,A,C}

^a Institute of Chemical Research of Catalonia, Av. Països Catalans, 16, 43007 Tarragona, Spain.
^b Departament de Química, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, E-08193 Barcelona, Spain
^c Departament de Química Orgànica, Universitat de Barcelona, c/ Martí I Franqués 1-11, 08080, Barcelona, Spain.

E-mail: mapericas@iciq.es, allobet@iciq.es

Contents

Drawing and labeling of 3a and <i>trans</i> - 3b	S3
Maldi-TOF of 2	S3
CV of 2 in DCM	S4
CV of 3a and <i>trans</i> - 3b in DCM	S5
$CV \text{ of } \mathbf{3a} \text{ in } H_2 \Omega$	S5
IIV-Vis spectra of 3a	S6
IP spectrum of MNPs 4a and 6a	S6
ID successing of MNDs turns the and turns the	S6
TEM wines a loc 7 - Concerned and Literation	S7
I EM micrograph of 7 a after second catalytic run.	S8
X-Ray Crystal Structure Determination	61.0
NMK characterization	510

Figure S3. Zoom of Maldi-TOF of 2 and simulated spectra.

Figure S5. CV of 3a (blue) and *trans*-3b (black) in CH₂Cl₂ (TBAH).

Figure S7. UV-Vis spectra of 3a in H₂O (red), MeOH (blue) and DCM (black).

Figure S8. IR spectrum of (a) MNPs, (b) 4a and (c) 6a.

Figure S9. IR spectrum of (a) MNPs, (b) *trans*-**4b** and (c) *trans*-**6b**.

Figure S10. TEM micrograph of 7a after second catalytic run.

X-Ray Crystal Structure Determination

Crystals of *cis*-**3b** and *trans*-**3b** were obtained by slow diffusion of diethyl ether over a solution of complex in dichloromethane. The measured crystals were prepared under inert conditions immersed in perfluoropoly-ether as protecting oil for manipulation.

Data collection: Crystal structure determinations were carried out using a Bruker-Nonius diffractometer equipped with an APPEX 2 4K CCD area detector, a FR591 rotating anode with MoK_{α} radiation, Montel mirrors as monochromator and a Oxford Cryosystem plus low temperature device (T = -173 °C). Full-sphere data collection was used with ω and φ scans. Programs used: Data collection APEX-2¹, data reduction Bruker Saint² V/.60A and absorption correction SADABS³.

Structure Solution and Refinement: Crystal structure solution was achieved using direct methods as implemented in SHELXTL⁴ and visualized using the program XP. Missing atoms were subsequently located from difference Fourier synthesis and added to the atom list. Least-squares refinement on F² using all measured intensities was carried out using the program SHELXTL. All non-hydrogen atoms were refined including anisotropic displacement parameters.

Compound *cis*-**3b**: The asymmetric unit is made up by one molecule of the complex, one PF₆ anion and a half molecule of dichloromethane. The dichloromethane molecule is disordered in two + two positions located around a C2 rotation axes (25:25:25:25). The dichloromethane molecule is shared with the neighboring asymmetric unit. The phosphorous rest of the main molecule is disordered in two orientations (ratio 92:08). Compound *trans*-**3b**: The asymmetric unit is made up by one molecule of the complex, one PF₆ anion, a half dichloromethane molecule and a quarter of water molecule. The phosphorous rest of the main molecule is disordered in two orientations (ratio 92:08). Compound *trans*-**3b**: The asymmetric unit is made up by one molecule of the complex, one PF₆ anion, a half dichloromethane molecule and a quarter of water molecule. The phosphorous rest of the main molecule is disordered in two orientations (ratio 52:48). Also the PF₆ anion is disordered in two orientations (ratio 77:33). The dichloromethane molecule is disordered over an inversion center. In the region of the water molecule only the electron density corresponding to a quarter of water could be localized.

Crystal data for *cis*-**3b at 100 K**: $C_{30}H_{29}Cl_1N_6O_3P_1Ru_1 + 1/2 CH_2Cl_2 + PF_6^{-}$, 876.52 gmol⁻¹, Monoclinic, C2/c, a = 29.0844(10) Å, b = 15.0420(5) Å, c = 16.3344(6) Å, $\alpha = 90^{\circ}$, $\beta = 108.315(2)^{\circ}$, $\gamma = 90^{\circ}$, V = 6784.1(4) Å³, Z = 8, $\rho_{calcd} = 1.716 \text{ Mg/m}^3$, $R_{1obs} = 0.0349 (R_{1ref} = 0.0471)$, wR2_{obs} = 0.798 (wR2_{ref} = 0.0858), for 8505 reflections with I>2 σ (I) (for 10257 reflections [R_{int}: 0.0533] with a total of 45833 reflections measured), diffracting 2theta range: 1.54° to 30.78°, goodness-of-fit on F² = 1.026, largest diff. peak (hole) = 1.024 (-0.724) e Å⁻³. **Crystal data for** *trans*-**3b at 100 K**: $C_{30}H_{29}Cl_1N_6O_3P_1Ru_1 + 1/2 CH_2Cl_2 + PF_6^{-} + 1/4 H_2O$, 881.02 gmol⁻¹, Triclinic, P-1, a = 10.9643(7) Å, b = 11.9921(8) Å, c = 15.4910(15) Å, $\alpha = 110.491(5)^{\circ}$, $\beta = 99.026(4)^{\circ}$, $\gamma = 107.666(3)^{\circ}$, V = 1737.2(2) Å³, Z = 2, $\rho_{calcd} = 1.684 \text{ Mg/m}^3$, $R_{1obs} = 0.0502$ (R_{1ref} = 0.0622), wR2_{obs} = 0.1284 (wR2_{ref} = 0.1367), for 8446 reflections with I>2 σ (I) (for 10105 reflections [R_{int}: 0.0543] with a total measured of 29332 reflections), diffracting 2theta range: 1.47° to 30.78°, goodness-of-fit on F² = 1.028, largest diff. peak (hole) = 2.090 (-1.373) e Å⁻³.

CCDC numbers for *cis*-**3b** and *trans*-**3b** are 896921 & 896922 respectively

¹ Data collection with APEX II versions v1.0-22, v2009.1-0 and v2009.1-02. Bruker (2007). Bruker AXS Inc., Madison, Wisconsin, USA.

² Data reduction with Bruker SAINT versions V.2.10(2003), V/.60A and V7.60A. Bruker (2007). Bruker AXS Inc., Madison, Wisconsin, USA.

³ SADABS: V.2.10(2003); V2008 and V2008/1 Bruker (2001). Bruker AXS Inc., Madison, Wisconsin, USA. Blessing, Acta Cryst. (1995) A51 33-38.

⁴ Sheldrick, G.M. Acta Cryst. 2008 A64, 112-122. SHELXTL versions V6.12 and 6.14.

NMR CHARACTERIZATION

Figure S12. ³¹P-NMR of 3a.

Figure S16. HMQC of 3a.

Figure S17. HMBC of 3a.

Ç

Figure S27. ¹H-NMR of *trans*-4b.