Supporting Information for:

Preparation of Carbon Nanotube-Supported α-Fe₂O₃@CuO Nanocomposite: A Highly Efficient and Magnetically Separable Catalyst 5 in Cross-Coupling of Aryl Halides with Phenols

Dariush Saberi,^a Mehdi Sheykhan,^b Khodabakhsh Niknam,^c and Akbar Heydari^{a,*}

^aChemistry Department, Tarbiat Modares University, P.O. Box 14155-4838 Tehran, Iran, Fax: (+98)-21- 82883455; phone: (+98)-21-82883444; email: heydar <u>a@</u>modares.ac.ir

10

^bChemistry Department, Guilan University, P.O.Box 41335-1914 Rasht, Iran

^cChemistry Department, Faculty of Sciences, Persian Gulf University, Bushehr, 75169, Iran

15

Table of Content
Experimental
Preparation of carbon nanotube-supported α -Fe ₂ O ₃
Synthesis of Carbon nanotube-supported α -Fe ₂ O ₃ @CuO nanoparticles
Recyclability test of Catalyst
Spectrum Information of diarylether derivatives
¹ H NMR and ¹³ C NMR Spectrum of diarylether derivatives

20

25

30

35

Experimental

All reagents were purchased from commercial suppliers and used without further purification. Multi wall carbon nanotubes used in this work incorporate 3.06 wt% of OH with an external diameter 10-20 nm, internal diameter 5-10 nm and approximate length of 30 micrometres. All experiments were 5 carried out under argon. Catalysts were characterized using spectroscopic techniques (FTIR, XRD, BET, BJH, ICP, VSM, SEM and TEM). FT-IR spectra were obtained over the region 400-4000 cm⁻¹ with NICOLET IR100 FT-IR with spectroscopic grade KBr. Powder XRD spectrum was recorded at r.t by a Philips X'pert 1710 diffractometer using Cu K α (α = 1.54056 Å) in Bragg-Brentano geometry $(\theta-2\theta)$. The BET specific surface area, pore volume and average pore size were determined by physical 10 adsorption of N₂ at -196 °C in an automatic volumetric system using Belsorp instrument. ICP analysis was accomplished using a VISTA-PRO, CCD simultaneous ICP analyser.Magnetic properties of catalyst were obtained by homemade VSM. SEM image was observed using SEM (Philips XL 30 and S-4160) with gold coating equipped with energy dispersive X-ray spectroscopy (EDX). TEM measurements were carried out at 120 kV (Philips, model CM120).NMR¹H and ¹³C NMR spectra were 15 recorded on a BrukerAvance (DRX 500 MHz) and BrukerUltrashield (400 MHz) in pure deuterated CDCl₃ solvent with tetramethylsilane (TMS) as internal standards.

Preparation of carbon nanotube-supported α -Fe₂O₃

FeSO₄•7H₂O (1.00 g, 3.6 mmol) was dissolved into 10 mL distilled water and then multiwall carbon nanotubes (0.200 g) were added into solution. The complex was sonicated for 5 min, and then 20 hydrogen peroxide (30 mL, 30%) was dripped slowly into the above complex with vigorous stirring and refluxed at 353 K for 4 h. The black complex was collected by decantation, washed with distilled water, and subsequently treated in an oven at 393 K for 12 h. This resulting nanocomposite (CNT@Fe(OH)₃.xH₂O) was then exposed to argon atmosphere at 450 °C giving rise to a carbon nanotube-supported α-Fe₂O₃ compound.

Synthesis of Carbon nanotube-supported α -Fe₂O₃@CuO nanoparticles

To a magnetically stirred mixture of Cu(OAc)₂.H₂O (0.4 g, 2.2 mmol) in deionized water (100 mL), carbon nanotube-supported α-Fe₂O₃ (0.4 g) was added and then the solution was heated to 100 °C. After hydrolysis and crystallization for 5 h, the black precipitate formed in the solution was 5 magnetically decanted, washed repeatedly with distilled water and absolute ethanol, and dried in air at room temperature.

Recyclability test of Catalyst

Upon completion of the first reaction between iodobenzene and phenol to afford a quantitative yield of the corresponding aryl ether (92% yield), the catalyst was recovered by external magnet, washed with 10 H₂O and ethanol and oven dried at 80 °C overnight. A new reaction was then performed with fresh solvent and reactants under identical conditions.

15

20

25

30

Spectroscopic data of products:

Diphenyl ether.Following the general procedure using phenol (94 mg, 1mmol) and iodobenzene (0.05 mL, 0.5 mmol) provided 156.6 mg (92% yield) of the coupling product as a colorless liquid after purification by flash chromatography (pentane) of the crude oil.

5

¹H NMR (CDCl₃, 500 MHz) δ 7.05 (d, *J*=7.75 Hz, 4H), 7.13 (t, *J*=7.35, 2H), 7.37 (t, *J*=7.55 Hz, 4H),

¹³C NMR (CDCl₃, 125 MHz) δ 118.9, 123.2, 129.7, 157.3

All spectral data correspond to those given in the literature

10 **4-Methoxyphenyl phenyl ether.** Following the general procedure using 4-Methoxyphenol (124 mg, 1mmol) and iodobenzene (0.05 mL, 0.5mmol) provided 180 mg (90% yield) of the coupling product as a colorless liquid after purification by flash chromatography (pentane) of the crude oil.

- ¹⁵ ¹H NMR (CDCl₃, 400 MHz) δ 3.73 (s, 3H), 6.78-6.82 (m, 2H), 6.85-6.92 (m, 4H), 6.96 (t,*J*= 7.32 Hz, 1H), 7.22 (t,*J*= 7.32 Hz, 2H);
 ¹³CNMR (CDCl₃, 100 MHz) δ 55.8, 114.9, 115.0, 117.7, 121.0, 122.4, 129.6, 129.8, 155.8;
 All spectral data correspond to those given in the literature
- 20 **4-Nitrophenyl phenyl ether.** Following the general procedure using 4-Nitrophenol (139mg, 1mmol) and iodobenzene (0.05 mL, 0.5 mmol) provided 157 mg (73% yield) of the coupling product as a yellow solid after purification by flash chromatography (8:2 pentane/DCM) of the crude oil.

¹H NMR (CDCl₃, 400 MHz) δ 6.89-6.93 (m, 2H), 7 (d, *J*=7.84 Hz, 2H), 7.17 (t, *J*=7.56 Hz, 1H), 7.34 (t, *J*=7.6Hz, 2H), 8.10 (d, *J*=9.36 Hz, 2H);

¹³C NMR (CDCl₃, 100 MHz) δ 117.1, 120.6, 125.5, 126, 130.4, 142.6, 154.7, 163.4;

All spectral data correspond to those given in the literature

5

4-Methylphenyl phenyl ether. Following the general procedure using 4-Methylphenol (100 mg, 1mmol) and iodobenzene (0.05 mL, 0.5 mmol) provided 175 mg (95% yield) of the coupling product as a colorless liquid after purification by flash chromatography (pentane) of the crude oil.

10

¹H NMR (CDCl₃, 400 MHz): δ =2.26 (s, 3H), 6.84 (d, *J*=8.56 Hz, 2H), 6.91 (d, *J*=8.56 Hz, 2H), 6.99 (t, *J*=7.56 Hz, 1H), 7.06 (d, *J*=8.1 Hz, 2H), 7.24 (t, *J*=7.56 Hz, 2H),

¹³C NMR (CDCl₃, 100 MHz): δ=20.7, 118.3, 119.1, 122.8, 129.7, 130.2, 132.9, 154.7, 157.8

All spectral data correspond to those given in the literature

15

4-Bromophenyl phenyl ether. Following the general procedure using 4-Bromophenol (173 mg, 1 mmol) and iodobenzene (0.05 mL, 0.5 mmol) provided 149 mg (60% yield) of the coupling product as a colorless liquid after purification by flash chromatography (pentane) of the crude oil.

20

¹H NMR (CDCl₃, 400 MHz): δ = 6.79-6.83 (m, 2H), 6.93 (d, *J*=7.56 Hz, 2H), 7.05 (t, *J*=7.56 Hz, 1H), 7.27 (t, *J*=7.57 Hz, 2H), 7.33-7.37 (m, 2H),

¹³C NMR (CDCl₃, 100 MHz): δ=115.6, 119.0, 120.4, 123.7, 129.9, 130.2, 132.7, 156.6, 156.7

All spectral data correspond to those given in the literature

4-Ethylphenyl phenyl ether. Following the general procedure using 4-Ethylphenol (122 mg, 1 mmol) and iodobenzene (0.05 mL, 0.5 mmol) provided 178 mg (90% yield) of the coupling product as a colorless liquid after purification by flash chromatography (pentane) of the crude oil.

5

¹H NMR (CDCl₃, 400 MHz): δ = 1.16 (t, *J*=7.56 Hz, 3H), 2.56(q, *J*=7.56 Hz, 2H), 6.87 (d,*J*=8.32 Hz, 2H), 6.91 (d,*J*=7.84Hz, 2H),7.00 (t, *J*=7.32 Hz, 1H), 7.09 (d, *J*= 8.56 Hz, 2H), 7.27 (t, *J*= 7.32 Hz, 2H), 2H),

¹³C NMR (CDCl₃, 100 MHz): δ=15.8, 28.2, 118.4, 119.1, 122.8, 129.0, 129.7, 139,3, 154,9, 157,76.

10 All spectral data correspond to those given in the literature

3,5-Dimethylphenyl phenyl ether. Following the general procedure using 3,5-Dimethylphenol (122 mg, 1 mmol) and iodobenzene (0.05 mL, 0.5 mmol) provided 168 mg (85% yield) of the coupling product as a colorless oil after purification by flash chromatography (pentane) of the crude oil.

15

¹H NMR (CDCl₃, 400 MHz) δ= 2.20 (s, 6H), 6.56 (s, 2H), 6.67 (s, 1H), 6.92 (d, *J*=7.56 Hz, 2H), 7.01 (t, *J*=7.32 Hz, 1H), 7.23-7.27 (m, 2H),

¹³C NMR (CDCl₃, 100 MHz) δ= 21.3, 116.6, 118.9, 123, 124.9, 129.7, 139.6, 157.1, 157.4

20

2-Naphthyl phenyl ether. Following the general procedure using 2-naphthol (144 mg, 1mmol) and iodobenzene (0.05 mL, 0.5 mmol) provided 209 mg (95% yield) of the coupling product as a Pale yellow colored solid after purification by flash chromatography (pentane) of the crude oil.

¹H NMR (CDCl₃, 400 MHz) δ =7 (d, *J*=7.56, 2H), 7.06 (t,*J*=7.56 Hz, 1H), 7.17-7.39 (m, 6H), 7.62 (d, *J*=7.8 Hz, 1H), 7.73-7.77 (m, 2H),

5¹³C NMR (CDCl₃, 100 MHz):=114.1, 119.2, 120.0, 123.5, 124.7, 126.5, 127.1, 127.8, 129.8, 129.9, 130.2, 134.3, 155.1, 157.2.

All spectral data correspond to those given in the literature

10 **2-Methylphenyl phenyl ether.** Following the general procedure using Phenol (94 mg, 1 mmol) and 2iodotoluene(0.064 mL, 0.5 mmol) provided 129 mg (70% yield) of the coupling product as a Colorlessliquidafter purification by flash chromatography (pentane) of the crude oil.

¹⁵ ¹H NMR (CDCl₃, 400 MHz) δ= 2.17 (s, 3H), 6.82-6.84 (m, 3H), 6.95-7.01 (m, 2H), 7.1 (t, *J*= 6.28 Hz, 1H), 7.17-7.24 (m, 3H);
¹³C NMR (CDCl₃, 100 MHz) δ= 16.2, 117.3, 119.8, 122.3, 124.0, 127.1, 129.7, 131.5, 131.46, 154.6

157.8;

All spectral data correspond to those given in the literature

20

3-Methylphenyl phenyl ether. Following the general procedure using phenol (94 mg, 1 mmol) and 3-bromotoluene (0.06 mL, 0.5 mmol) provided 133 mg (72% yield) of the coupling product as a colorless liquid after purification by flash chromatography (pentane) of the crude oil

¹H NMR (CDCl₃, 500 MHz) δ 2.35 (s, 3H), 6.78-6.85(m, 2H), 6.90-6.94 (m, 1H), 7.00-7.03 (m, 2H), 7.11 (t,*J*= 7.4 Hz, 1H), 7.22 (t, *J*= 7.85 Hz, 1H), 7.33-7.37 (m, 2H); ¹³C NMR (CDCl₃, 125 MHz) δ 21.5, 116.0, 119.0, 119.7, 123.2, 124.2, 129.6, 129.8, 140.1, 154.3, 157.5;

5 All spectral data correspond to those given in the literature

3-Pyridine phenyl ether. Following the general procedure using phenol (94 mg, 1 mmol) and 3-iodopyridine (102 mg, 0.5 mmol) provided 128 mg (75% yield) of the coupling product as a colorless oil after purification by flash chromatography (pentane) of the crude oil

10

¹H NMR (CDCl₃, 500 MHz) δ 7.03 (d, *J* = 8.4 Hz, 2H), 7.16 (t, *J* = 7.4, 1H), 7.22-7.30 (m, 2H), 7.38 (t,*J*= 8.3, 2H), 8.37 (br s, 1H), 8.42 (brs, 1H);

¹³C NMR (CDCl₃, 125 MHz) δ 119, 121.3, 124, 125, 130, 141, 144, 157.3, 157.5;

15

5-Pyrimidine phenyl ether. Following the general procedure using phenol (94 mg, 1 mmol) and 5-bromopyrimidine (79 mg, 0.5 mmol) provided 129 mg (75% yield) of the coupling product as a white solid crystal after purification by flash chromatography (pentane) of the crude oil

20

¹H NMR (CDCl₃, 500 MHz) δ 7.06 (t, J = 8.35 Hz, 2H), 7.41- 7.44 (m, 3H), 8.48(s, 2H), 8.97 (s, 1H); ¹³C NMR (CDCl₃, 125 MHz) δ 119.1, 123.2, 130.3, 144.4, 147.0, 153.2, 175.2;

Diphenyl ether

4-Methoxyphenyl phenyl ether

4-Nitrophenyl phenyl ether

4-Methylphenyl phenyl ether

4-Ethylphenyl phenyl ether

2-Naphthyl phenyl ether

5

2-Methylphenyl phenyl ether

Electronic Supplementary Material (ESI) for Catalysis Science & Technology This journal is C The Royal Society of Chemistry 2013

3-Pyridine phenyl ether

5

S19

90 80 70 60 50 40 30 20

ppm

190 180 170 160 150 140 130 120 110 100

5-Pyrimidine phenyl ether

