Supplementary Material (ESI) for Catalysis Science & Technology This journal is (c) The Royal Society of Chemistry 2013

Novel MnWO*^x* **catalyst with remarkable performance for low**

temperature NH3-SCR of NO*^x*

Fudong Liu, Wenpo Shan, Zhihua Lian, Lijuan Xie, Weiwei Yang and Hong He*

Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China. Fax: 86-10-6284-9123; Tel: 86-10-6284-9123; E-mail: honghe@rcees.ac.cn (H. He)

Electronic Supplementary Information

The stability test of MnWO*^x* **catalyst in NH3-SCR reaction**

Fig. S1. (A) The NO_x conversion over MnWO_x catalyst in NH₃-SCR reaction at 150 °C for 48 h under GHSV of 100,000 h^{-1} (inserted: the SCR activity of MnWO_x catalysts before and after stability test as a function of temperature); (B) The NO_x conversion over $MnWO_x$ catalyst in NH₃-SCR reaction in the presence of 5 vol.% H₂O at 150 $^{\circ}$ C for 48 h under GHSV of 50,000 h⁻¹.

To better test the stability of MnWO*^x* catalyst in the deNO*^x* process, we also carried out the NH₃-SCR reaction at 150 °C for 48 h under the GHSV of 100,000 h^{-1} , and during the reaction period that we investigated the NO*^x* conversion was always maintaining at 100% as shown in Fig. $S1(A)$. After the stability test, we again tested the SCR performance of the used MnWO_x catalyst in the whole temperature range, and no decline of SCR activity was observed at all comparing with the fresh catalyst. These results clearly indicate that the MnWO_x catalyst is highly stable in the $NH₃-SCR$ reaction at low temperatures, which is advantageous to the practical use. We also carried out the stability test of MnWO_x catalyst in the presence of 5 vol.% H₂O at 150 °C for 48 h under the GHSV of 50,000 h⁻¹. As we can clearly see, after the addition of H_2O , the NO_{*x*} conversion over MnWO*^x* catalyst decreased from 100% to *ca.* 60% in nearly 12 h (possibly due the competitive adsorption of H_2O and the slow deposition of ammonium nitrate onto catalyst surface) and then maintained at *ca.* 60% for the next 36 h. After the shutting off of H_2O , the NO_x conversion returned to 100% rapidly, indicating that the deactivation effect of H_2O on the NH3-SCR activity of MnWO*^x* catalyst at this temperature point is reversible. If operating at temperatures above 150 \degree C, this MnWO_y catalyst can have long term stability even in the presence of water vapour.

In situ **DRIFTS** results about the influence of H_2O on the NH_3/NO_x adsorption **and NH3-SCR reaction over MnWO***^x* **catalyst**

Fig. S2. *In situ* DRIFTS results about the influence of H_2O on (A) NH_3 adsorption, (B) NO_x adsorption and (C) NH₃-SCR reaction over MnWO_x catalyst at 100 °C.

Peak assignments:

- (A) 1684/1654 and 1456 cm⁻¹ (NH₄⁺); 1603 and 1182 cm⁻¹ (coordinated NH₃); 1290 cm⁻¹ (unknown assignment).
- (B) 1631 cm⁻¹ (bridging nitrate); 1593 and 1018 cm⁻¹ (bidentate nitrate); 1550 and 1277 cm⁻¹ (monodentate nitrate).
- (C) 1700 cm⁻¹ (NH₄⁺);1603 and 1192 cm⁻¹ (coordinated NH₃); 1456 and 1290 cm⁻¹ (surface ammonium nitrate species); 1032 cm^{-1} (bidentate nitrate).