Supporting Information for

Continuous asymmetric Michael additions of ketones to β -
 nitroolefins over (1R, 2R)-(+)-1,2-DPEN modified sulfonic acid resin

Jun Tian, Chao Zhang, Xuefei Qi, Xilong Yan, Yang Li, Ligong Chen*

School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072,
People's Republic of China
Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, P.R. China
Corresponding author. Tel.: +8622 27406314; fax: +8622 27406314. E-mail address: lgchen@tju.edu.cn (Lg. Chen)

General Methods

Sulfonyl chloride resin ($2.35 \mathrm{mmol} / \mathrm{g}$ substitution) was purchased from Tianjin Nankai Hecheng Science \& Technology Co., LTD. (1R, 2R)-(+)-1, 2-DPEN was obtained from Lian Yungang Chiral Chemical (China) Co., LTD. Other commercial reagents were obtained from Tianjin Jiangtian Chemical Technology Co., Ltd and used without further purification except for otherwise explanation. Temperaturegravity property of the catalyst was measured with an STA 409PC thermo gravimetric (TG) analysis. The catalyst was heated from room temperature to $800^{\circ} \mathrm{C}$ at a rate of $10^{\circ} \mathrm{C} / \mathrm{min}$ in a stream of $\mathrm{N}_{2}(40 \mathrm{~mL} / \mathrm{min})$. Elemental analysis was carried out on a Vario Micro cube element analyzer. FTIR spectra were recorded on a Nicolet AVATAR 370 FTIR spectrometer.

Preparation of the catalyst

The catalyst was prepared as follows: 5.0 g sulfonyl chloride resins were dispersed in 50 mL dry dichloromethane with stirring at room temperature. $10.0 \mathrm{~g}(1 \mathrm{R}, 2 \mathrm{R})-(+)-1$, 2-DPEN was dissolved in 150 mL dry dichloromethane and added to the solution under vigorous stirring. The reaction mixture was stirred for 24 h and the solid catalyst was obtained by filtration. It was washed with DMF, ethanol and DCM for five times respectively. Then the catalyst was dried at $50^{\circ} \mathrm{C}$ for 6 h .

Catalytic reaction

The asymmetric Michael addition of aldehydes or ketones to nitroolefins was carried out in a tubular, fixed-bed reactor with an inner diameter of 7 mm and a length of 275 mm , which was charged with $3.31 \mathrm{~g}(249 \mathrm{~mm})$ catalysts. 1.33 mmol aldehydes or ketones and 0.133 mmol nitroolefins were added into 20 mL toluene. The solution
was dosed into the reactor by a micro-injector with $0.6 \mathrm{~mL} / \mathrm{h}$. The reaction mixture was analyzed by high performance liquid chromatography (HPLC) with AS-H column and ultraviolet detector.

The preparation of nitroolefins

Nitrostyrene was synthesized as follows. $25 \mathrm{~mL} 10 \mathrm{~mol} / \mathrm{L} \mathrm{NaOH}$ solution was dropwise added to the solution of 15.0 g nitromethane and 26.5 g benzaldehyde in 100 mL methanol with stirring at $10-15{ }^{\circ} \mathrm{C}$. Then 50 mL concentrated hydrochloric acid was diluted with 75 mL water. Subsequently, it was dropwise added into the reaction mixture. The obtained pale yellow solid was filtered and washed with water. The crude nitrostyrene was purified by recrystallization in ethanol. The other nitroolefins were similarly prepared.
$\boldsymbol{\beta}$-Nitrostyrene. (Pale yellow needles), ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \& 7.35-7.57 \quad(\mathrm{~m}, 5 \mathrm{H})$, $7.60(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz} 1 \mathrm{H}), 8.00(\mathrm{~d}, \mathrm{~J}=13.5 \mathrm{~Hz}, 1 \mathrm{H})$.
4'-Methoxy- $\boldsymbol{\beta}$-nitrostyrene. (Yellow needles), ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \& 3.87(\mathrm{~s}, 3 \mathrm{H})$, $6.97(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, \mathrm{~J}=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{~d}, \mathrm{~J}$ $=13.7 \mathrm{~Hz}, 1 \mathrm{H})$.

4'-Chloro- β-nitrostyrene. (Yellow powder), ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \& 7.32-7.42(\mathrm{~m}, 4 \mathrm{H})$, $7.58(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.95(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H})$.

2'-Chloro- β-nitrostyrene. (Yellow powder), ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \& 7.37-7.46(\mathrm{~m}, 2 \mathrm{H})$, $7.53\left(\mathrm{dd}, \mathrm{J}_{1}=8.0 \mathrm{~Hz}, \mathrm{~J}_{2}=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.62\left(\mathrm{dd}, \mathrm{J}_{1}=7.7 \mathrm{~Hz}, \mathrm{~J}_{2}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.63(\mathrm{~d}$, $\mathrm{J}=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.44(\mathrm{~d}, \mathrm{~J}=13.7 \mathrm{~Hz}, 1 \mathrm{H})$.

The preparation of the racemic adducts

To a solution of (DL)-proline (0.1 mmol) in 50.0 mL MeOH was added 10 mmol aldehydes or ketones and 1 mmol nitroolefins. The reaction mixture was refluxed with stirring for 12 h and then concentrated. The residue was purified by column chromatography (the volume ration of petroleum ether and ethyl acetate is 10:1).

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \& 7.20-7.35(\mathrm{~m}, 5 \mathrm{H}), 4.69\left(\mathrm{dd}, \mathrm{J}_{1}=12.5 \mathrm{~Hz}, \mathrm{~J}_{2}=6.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.60\left(\mathrm{dd}, \mathrm{J}_{1}=12.5 \mathrm{~Hz}, \mathrm{~J}_{2}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.97-4.03(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{~d}, \mathrm{~J}=5 \mathrm{~Hz}$, $2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H})$; The compound was analyzed by chiral HPLC with a Chiralpack AS-H column under $1 \mathrm{~mL} / \mathrm{min}$ at 213 nm (the n-hexane / 2-propanol volume ratio is $85: 15$); $\mathrm{t}_{\mathrm{r}}=27.3 \mathrm{~min}$ (major), 37.0 min (minor).

${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right) \& 7.30(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.15(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.68(\mathrm{dd}$ $\left.\mathrm{J}_{1}=12.4 \mathrm{~Hz}, \mathrm{~J}_{2}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.57\left(\mathrm{dd}, \mathrm{J}_{1}=12.4 \mathrm{~Hz}, \mathrm{~J}_{2}=7.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.97-$ $4.03(\mathrm{~m}, 1 \mathrm{H}), 2.89(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H})$; The compound was analyzed by chiral HPLC with a Chiralpack AS-H column at 213 nm under $1 \mathrm{~mL} / \mathrm{min}$ 7 (the n-hexane / 2-propanol volume ratio is $85: 15$); $\mathrm{t}_{\mathrm{r}}=21.5 \mathrm{~min}$ (major), 34.0 min 8 (minor).
9
$1($
11

$$
12
$$

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \& 7.39-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.19-7.25(\mathrm{~m}, 3 \mathrm{H}), 4.76(\mathrm{~m}, 2 \mathrm{H})$, $4.46(\mathrm{~m}, 1 \mathrm{H}), 2.93-3.09(\mathrm{~m}, 2 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H})$; The compound was analyzed by chiral HPLC with a Chiralpack AS-H column at 213 nm under $1 \mathrm{~mL} / \mathrm{min}$ (the n -hexane / 2propanol volume ratio is $90: 10$); $\mathrm{t}_{\mathrm{r}}=19.3 \mathrm{~min}$ (major), 22.6 min (minor).

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \& 7.13(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 6.84(\mathrm{~d}, \mathrm{~J}=9.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{dd}$ $\left.\mathrm{J}_{1}=12.2 \mathrm{~Hz}, \mathrm{~J}_{2}=6.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.55\left(\mathrm{dd}, \mathrm{J}_{1}=12.2 \mathrm{~Hz}, \mathrm{~J}_{2}=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.94-3.98(\mathrm{~m}$, $1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H})$; The compound was analyzed by chiral HPLC with a Chiralpack AS-H column at 213 nm under $1.4 \mathrm{~mL} / \mathrm{min}$ (the $\mathrm{n}-$ hexane / 2-propanol volume ratio is 85:15); $\mathrm{t}_{\mathrm{r}}=19.9 \mathrm{~min}$ (major), 47.3 min (minor).

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \& 7.07-7.28(\mathrm{~m}, 5 \mathrm{H}), 4.87\left(\mathrm{dd}, \mathrm{J}_{1}=12.5 \mathrm{~Hz}, \mathrm{~J}_{2}=4.5 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 4.56\left(\mathrm{dd}, \mathrm{J}_{1}=12.5 \mathrm{~Hz}, \mathrm{~J}_{2}=9.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.65-3.73(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.66(\mathrm{~m}, 1 \mathrm{H})$, 2.26-2.45 (m, 2H), 1.97-2.05 (m, 1H), 1.43-1.73 (m, 4H), 1.10-1.23 (m, 1H); The compound was analyzed by chiral HPLC with a Chiralpack AS-H column at 213 nm under $1.0 \mathrm{~mL} / \mathrm{min}$ (the n -hexane / 2-propanol volume ratio is $90: 10$); $\mathrm{t}_{\mathrm{r}}=15.2$ \min (major), $24.5 \min ($ minor $)$.

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \& 7.15-7.37(\mathrm{~m}, 5 \mathrm{H}), 5.01(\mathrm{~d}, \mathrm{~J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.66-4.79$ $(\mathrm{m}, 1 \mathrm{H}), 3.66-3.72(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.54(\mathrm{~m}, 3 \mathrm{H}), 1.78-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.57-1.78(\mathrm{~m}, 2 \mathrm{H})$; The compound was analyzed by chiral HPLC with a Chiralpack AS-H column at 213 7 nm under $0.5 \mathrm{~mL} / \mathrm{min}$ (the n -hexane / 2-propanol volume ratio is $80: 20$); $\mathrm{t}_{\mathrm{r}}=22.4 \mathrm{~min}$ 8 (major), 29.8 min (minor).

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \& 7.33-7.25(\mathrm{~m}, 3 \mathrm{H}), 7.15-7.14(\mathrm{~m}, 2 \mathrm{H}), 4.65\left(\mathrm{dd}, \mathrm{J}_{1}=\right.$ $\left.12.5 \mathrm{~Hz}, \mathrm{~J}_{2}=9.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.58\left(\mathrm{dd}, \mathrm{J}_{1}=12.5 \mathrm{~Hz}, \mathrm{~J}_{2}=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.73-3.68(\mathrm{~m}, 1 \mathrm{H})$, 3.01-2.94 (m, 1H), 2.63-2.54 (m, 1H), 2.43-2.35 (m, 1H), $1.05(\mathrm{t}, \mathrm{J}=7.3 \mathrm{~Hz}, 3 \mathrm{H})$, $0.95(\mathrm{~d}, \mathrm{~J}=7.1 \mathrm{~Hz}, 3 \mathrm{H})$; The compound was analyzed by chiral HPLC with a Chiralpack AS-H column at 213 nm under $0.5 \mathrm{~mL} / \mathrm{min}$ (the n-hexane / 2-propanol volume ratio is $90: 10$); $\mathrm{t}_{\mathrm{r}}=13.9 \mathrm{~min}$ (major), 17.9 min (minor).
 $(\mathrm{m}, 3 \mathrm{H}), 4.61-4.75(\mathrm{~m}, 2 \mathrm{H}), 3.77-3.82(\mathrm{~m}, 1 \mathrm{H}), 2.66-2.72(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.55(\mathrm{~m}, 2 \mathrm{H})$, 0.82-0.91 (m, 3H); The compound was analyzed by chiral HPLC with a Chiralpack AS-H column at 213 nm under $2 \mathrm{~mL} / \mathrm{min}$ (the n -hexane / 2-propanol volume ratio is 99:1); $\mathrm{t}_{\mathrm{r}}=26.6 \mathrm{~min}$ (major).

${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right) \& 9.52(\mathrm{~s}, 1 \mathrm{H}), 7.18-7.35(\mathrm{~m}, 5 \mathrm{H}), 4.85\left(\mathrm{dd}, \mathrm{J}_{1}=13.0 \mathrm{~Hz}\right.$, $\left.\mathrm{J}_{2}=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.69\left(\mathrm{dd}, \mathrm{J}_{1}=13.0 \mathrm{~Hz}, \mathrm{~J}_{2}=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.78\left(\mathrm{dd}, \mathrm{J}_{1}=11.5 \mathrm{~Hz}, \mathrm{~J}_{2}=\right.$ $4.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H})$; The compound was analyzed by chiral HPLC with a Chiralpack AS-H column at 213 nm under $1 \mathrm{~mL} / \mathrm{min}$ (the n -hexane / 2propanol volume ratio is $80: 20$).

1 HPLC spectra for Michael addition

2

3

分析结果表

䇅号	険名	保留时间	旋高	族面积	含量
1		28.622	250707.453	20734572.000	53.3760
2		36.445	106832.297	18111678.000	46.6240
总计			357539.750	38846250.000	100.0000

分析结果表

竦号	诼名	保留时间	的商	糆面积	含量
1		10.122	429728.406	17802610.000	34.5483
2		27.302	304515.813	32542148.000	63.1522
3		37.030	17084． 369	1184931.875	2.2995
总计			751328.588	51529689.875	100.0000

分折结果表

姣号	蜉名	保留时间	䞄高	䞄面积	含量
1		14.735	934463.563	77104416.000	48.6740
2		21.523	79807． 133	4912860.000	3． 1014
3		24.040	727012.188	76392672.000	48.2247
总计			1741282.883	158409948.000	100.0000

分析结果表

| 峰号 | 峰名 | 保留时间 | 峰高 | 峰面积 |
| :---: | :---: | :---: | :---: | :---: |$⿻$| 含量 |
| :---: |
| 1 |
| 2 |

分析结果表

梌号	梌名	保留时间	旋高	䞄面积	含量
1		20.375	1264610.000	90071736.000	47.2819
2		23． 582	1119960.500	100427680.000	52.7181
总计			2383970.500	190499416.000	100.0000

分析结果表

峰号	峰名	保留时间	峰高	峰面积

分折结果表					
䞄号	実名	保留时间	诼高	烁面㹲	含量
1		24.238	195677.969	15243195.000	51.2887
2		37.387	62110． 531	14477205.000	48.7113
总计			257788.500	29720400．000	100.0000

分析结果表

㧰号	诼名	保留时间	值落	族面积	含量
1		10.045	16100.012	660420.125	4.4583
2		21.548	161641.844	13652627.000	92.1639
3		34.040	6326.409	500367.188	3.3778
总计			184068.264	14813414.313	100.0000

分折结果表

站号	溇名	保留时间	剱高	鮬面颉	含量
1		19.863	529354.375	56344000.000	51.5154
2		43.120	132484.406	53029144.000	48.4846
总计			661838．781	109373144.000	100.0000

为

分析结果表

峰号	峰名	保留时间	峰高	峰面积

分析结果表					
族号	糆名	保留时间	族高	族面积	含量
1		21.752	262628.625	27833128.000	49.9066
2		27.402	159634． 703	27937358.000	50.0934
总计			422263.328	55770486.000	100.0000

分析结果表

峰号	峰名	保留时间	峰高	峰面积

	Peak\＃	RT（min）	Height $(\mu \mathrm{V})$	Area $\left(\mu \mathrm{V}^{\star}\right.$ Sec $)$	Area $\%$
	1	26.165	68524.813	6194734.000	42.0449
	2	28.365	6658.875	8538897.000	57.9551
	Total		135113.688	14733631.000	100.0000

分析结果表

峰号	峰名	保留时间	峰高	峰面积

1
2 3

4 5 6 7
8 9 10 11

12
13
14
15
16
17
18
19
20
21

4 9

Peak\＃	RT (min)	Height $(\mu \mathrm{V})$	Area $\left(\mu \mathrm{V}^{\star} \mathrm{Sec}\right)$	Area $\%$
1	14.003	122658.617	7565940.500	50.8165
2	18.012	98356.328	7322801.500	49.1835
Total		221014.945	14888742.000	100.0000

分析结果表

釈号	糆名	保留时间	鉌高	的面积	含量
1		10.728	854840.250	40429528.000	83.7005
2		13.937	141180.953	7136096.500	14．7737
3		17.858	18272． 529	736973.000	1． 5257
总计			1014293.732	48302597． 500	100.0000

