Structural features and catalytic performance in CO preferential oxidation of

CuO-CeO₂ supported on multi-walled carbon nanotubes

Yuxian Gao,^a Kangmin Xie,^a Wendong Wang,^{*a} Shiyang Mi,^a Ning Liu,^a Guoqiang Pan^b and Weixin Huang^a

^a CAS Key Laboratory of Materials for Energy Conversion and Department of Chemical Physics, University of Science and Technology of China, Hefei 230026, China.

^b National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, China.

^{*} Corresponding author. Tel.: +86-551-63603683; fax: +86-551-63606735.

E-mail address: wangwd@ustc.edu.cn

Catalyst	Cu/Ce ^a	Cu/Ce ^b	Cu/Ce ^c	$d_{\text{CeO2}} (\text{nm})$	Ce ³⁺ /Ce _{total}
CuO-CeO ₂ (5/5)/AC	1.00	1.03	2.62	3.1	0.29
CuO-CeO ₂ (5/5)/Al ₂ O ₃	1.00	0.97	0.91	3.5	0.40
CuO-CeO ₂ (5/5)/SiO ₂	1.00	0.95	0.86	4.1	0.24

Table S1 Structure characteristics for CuO-CeO2 catalysts supported on different materials

^a Cu/Ce ratio according to the nominal composition.

^b Cu/Ce ratio determined by ICP-AES.

^c Cu/Ce ratio determined by XPS.

Fig. S1. XRD patterns of CuO-CeO₂ catalysts supported on different materials: (a) CuO-CeO₂(5/5)/AC, (b) CuO-CeO₂(5/5)/Al₂O₃, (c) CuO-CeO₂(5/5)/SiO₂.

Fig. S2. TEM (left) and HRTEM (right) images of CuO-CeO₂ catalysts supported on different materials: (a) CuO-CeO₂(5/5)/AC, (b) CuO-CeO₂(5/5)/Al₂O₃, (c) CuO-CeO₂(5/5)/SiO₂.

Fig. S3. Cu 2p core level spectra of CuO-CeO₂ catalysts supported on different materials: (a) CuO-CeO₂(5/5)/AC, (b) CuO-CeO₂(5/5)/SiO₂, (c) CuO-CeO₂(5/5)/Al₂O₃.

Fig. S4. H₂-TPR profiles of CuO-CeO₂ catalysts supported on different materials: (a) CuO-CeO₂(5/5)/CNT, (b) CuO-CeO₂(5/5)/AC, (c) CuO-CeO₂(5/5)/SiO₂ and (d) CuO-CeO₂(5/5)/Al₂O₃.