Electronic Supplementary Material (ESI) for Catalysis Science & Technology. This journal is © The Royal Society of Chemistry 2015

> Electronic Supplementary Material (ESI) for Journal Name. This journal is © The Royal Society of Chemistry 2014

Electronic Supporting Information

Facile one-pot fabrication of silica gel-supported chiral phase-transfer catalyst—*N*-(2-cyanobenzyl)-*O*(9)-allyl-cinchonidinium salt

Dandan Feng,^a Jinghan Xu,^a Jingwei Wan,^a Bing Xie *^b and Xuebing Ma*^a

Table of contents

Preparation of chira	al phase-transf	fer catalyst Cl	DPTC	S2				
General procedure for <i>N</i> -(2-cyanobenzyl)cinchonidinium bromide								
General procedure for (CDPTC)	N-(2-cyanobenzy	l)-O(9)-allylcinc	honidinium bi	romide S2				
Characterization da	ata of α-alkylat	tion products	•••••••	S3				
X-ray diffraction of SiO ₂ @CDPTCS32								
The recovery	y and S32	reuse	of	catalyst				
HPLC chromatogram of various electrophiles catalyzed by homogeneous CDPTC								
N ₂ adsorption–desorption isotherm of deeply hydrolytic								
SiO ₂ @CDPTC	•••••••			S37				

An analogues of Cl	DPTC	S38
--------------------	------	-----

Preparation of chiral phase-transfer catalyst CDPTC

General procedure for N-(2-cyanobenzyl)cinchonidinium bromide

In the 250 mL round-bottomed flask, a mixture of cinchonidine (2.9 g, 10.0 mmol) and 2-cyanobenzyl bromide (2.1 g, 11.0 mmol) in toluene (100 mL) was stirred at 65°C for 12 h. The reaction mixture was filtered, washed with toluene (15 mL×3). The crude solid was recrystallized from methanol/ether (225 mL, v/v = 1/8) to afford the white *N*-(2-cyanobenzyl)cinchonidinium bromide (4.7 g, 95%).

¹H NMR (300.1 MHz, CDCl₃, TMS) δ 8.86 (d, ³*J* = 4.3 Hz, 1H, Ar-H), 8.47 (d, ³*J* = 7.6 Hz, 1H, Ar-H), 8.21 (d, ³*J* = 7.5 Hz, 1H, Ar-H), 7.95 (d, ³*J* = 7.8 Hz, 1H, Ar-H), 7.78 (d, ³*J* = 4.3 Hz, 1H, Ar-H), 7.63 (dd, ³*J* = 9.6, 5.6 Hz, 2H, Ar-H), 7.56 – 7.43 (m, 3H, Ar-H), 6.68 (s, 1H, OCH), 6.08 (d, ³*J* = 10.0 Hz, 1H, -CH=), 5.49 (ddd, ³*J* = 16.8, 10.4, 6.1 Hz, 2H, =CH₂), 5.17 (d, ³*J* =

17.2 Hz, 1H, N⁺-CH), 4.95 (d, ${}^{3}J$ = 10.4 Hz, 2H, N⁺-CH₂), 4.02 (d, ${}^{3}J$ = 9.5 Hz, 2H, N⁺-CH₂), 3.17 – 2.98 (m, 2H, N⁺-CH₂), 2.54 (s, 1H, -OH), 2.17 (t, ${}^{3}J$ = 11.1 Hz, 1H, CH), 2.01 (dd, ${}^{3}J$ = 22.5, 9.5 Hz, 3H, CH, CH₂), 1.60 – 1.76 (m, 2H, CH₂).

Fig. 1 ¹H NMR spectra of N-(2-cyanobenzyl)cinchonidinium bromide

General procedure for N-(2-cyanobenzyl)-O(9)-allylcinchonidinium bromide (CDPTC)

In 250 mL of round-bottomed flask was added *N*-(2-cyanobenzyl)cinchonidinium bromide (4.8 g, 9.8 mmol), CH₂Cl₂ (100 mL), allyl bromide (3.6 g, 29.4 mmol) and 50% aqueous KOH solution (5.5 mL, 49.0 mmol), successively. The resulting mixture was stirred vigorously at 25°C for 24 h. Then the mixture was diluted with water (20 mL) and extracted with dichloromethane (50 mL×3). The combined organic phase was dried over Na₂SO₄, filtered and concentrated in *vacuo*. The crude solid was recrystallized from dichloromethane/hexane (220 mL, v/v=1/10) to obtain the light yellow solid *N*-(2-cyanobenzyl)-O(9)-allylcinchonidinium bromide (4.7 g, 90%).

¹H NMR (300 MHz, CDCl₃, TMS) δ 8.96 (d, ³*J* = 4.3 Hz, 2H, Ar-H), 8.84 (d, ³*J* = 8.5 Hz, 1H, Ar-H), 8.13 (d, ³*J* = 8.3 Hz, 1H, Ar-H), 7.92 (d, ³*J* = 6.4 Hz, 1H, Ar-H), 7.89 -7.73 (m, 3H, Ar-H), 7.65 (t, ³*J* = 7.6 Hz, 2H, Ar-H),

6.91 (d, ${}^{3}J$ = 12.1 Hz, 1H, OCH), 6.28–6.09 (m, 2H, -CH=, -CH=), 5.70 (ddd, ${}^{3}J$ = 16.8, 10.4, 6.2 Hz, 1H, =CH₂), 5.41 (d, ${}^{3}J$ = 17.2 Hz, 1H, =CH₂), 5.31 (dd, ${}^{3}J$ = 13.6, 8.0 Hz, 2H, =CH₂), 5.22 (d, ${}^{3}J$ = 12.5 Hz, 1H, N⁺-CH), 4.98 (dd, ${}^{3}J$ = 23.9, 11.3 Hz, 2H, N⁺-CH₂), 4.83 – 4.56 (m, 2H, OCH₂), 4.16 (d, ${}^{3}J$ = 6.1 Hz, 2H, N⁺-CH₂), 3.16 (dd, ${}^{3}J$ = 15.4, 7.0 Hz, 2H, N⁺-CH₂), 2.63 (s, 1H, CH), 2.17 (dd, ${}^{3}J$ = 16.7, 6.2 Hz, 1H, CH), 2.06 (d, ${}^{3}J$ = 7.0 Hz, 3H, CH₂, CH₂), 1.82 (d, ${}^{3}J$ = 6.6 Hz, 1H, CH₂).

Fig. 2 ¹H NMR of N-(2-cyanobenzyl)-O(9)-allylcinchonidinium bromide

Characterization data of α -alkylation products

tert-Butyl 3-phenyl-2-(diphenylmethyleneamino)propanoate (Table 1).

¹H NMR (300.1 MHz, CDCl₃, TMS) δ 7.52 (d, ³*J* = 7.0 Hz, 2H, Ph-H), 7.30–7.00 (m, 11H, Ph-H), 6.54 (d, ³*J* = 6.4 Hz, 2H, Ph-H), 4.06 (dd, ³*J* = 4.4 Hz, 4.4 Hz, 1H, NCH), 3.22–3.07 (m, 2H, CH₂), 1.39 (s, 9H, CH₃); ¹³C NMR (75.0 MHz, CDCl₃, TMS): δ 170.8, 170.2 (C=N, C=O), 139.5, 138.3, 137.5, 136.3, 132.4, 130.0, 129.8, 129.3, 128.6, 128.4, 128.2,

128.1, 128.0, 128.0, 127.9, 127.6, 126.6, 126.1(Ph), 81.1 (O-C), 67.9 (NCH), 39.5 (CH₂), 28.0 (CH₃); HPLC analysis: Phenomenex Lux 5u Amylose-2, hexane/dioxane = 95/5, 254 nm, flow rate = 0.5 ml/min, retention times: 12.8 min (R), 15.3 min (S).

Fig.3 ¹H NMR spectra of tert-butyl 3-phenyl-2-(diphenylmethyleneamino)propanoate

Fig.4 ¹³C NMR spectra of tert-butyl 3-phenyl-2-(diphenylmethyleneamino)propanoate

Fig.5 The HPLC chromatogram of racemic *tert*-butyl 3-phenyl-2-(diphenylmethyleneamino) propanoate

C	AD1 A, Sig=254	1,4 Ref=360,100	(FENGDAN\2014	10613-11' BNBR	.D)							
mAU - 450 -	Entry	Time	Area	Height	Wedth	Symmetry	Area %]	16.254			
-	1	[min]	[mAU*s] 262.8	[mA0]	[mm]	n q	1 949		()			
400 -	2	15.254	13954.4	453.1	0.5133	0.595	98.152					
350 -								1				
-		_ L	k									
300 -										1		
250	Ĺ	JU]									
200												
150												
1												
100 -												
50								849				
		2	4	6	8		10	12	14	16	18	min

Fig.6 The HPLC chromatogram of *tert*-butyl

3-phenyl-2-(diphenylmethyleneamino)propanoate catalyzed by SiO2@CDPTC

tert-Butyl 3-(4-trifluoromethylphenyl)-2-(diphenylmethyleneamino)propanoate (Entry 1 in Table 2).

¹H NMR (300.1 MHz, CDCl₃, TMS): δ 7.54 (d, ³*J* = 7.1 Hz, 2H, Ph-H), 7.40 (d, ³*J* = 7.9 Hz, 2H, Ph-H), 7.37–7.21 (m, 6H, Ph-H), 7.13 (d, ³*J* = 7.9 Hz, 2H, Ph-H), 6.58 (d, ³*J* = 6.4 Hz, 2H, Ph-H), 4.10 (dd, ³*J* = 4.4 Hz, 4.4 Hz, 1H, NCH), 3.27–3.14 (m, 2H, CH₂), 1.41 (s, 9H, CH₃); ¹³ C NMR (75.0 MHz, CDCl₃, TMS): δ 170.7, 170.4 (C=N, C=O),

142.6 (q, ${}^{3}J_{C-F} = 1.3$ Hz), 139.2, 137.5, 136.0, 132.4, 130.3, 130.1, 130.0, 130.0, 129.7, 128.6, 128.3, 128.2, 128.1, 128.0, 127.4, 126.0 (Ph), 125.2 (q, ${}^{2}J_{C-F} = 3.8$ Hz), 124.9 (q, ${}^{1}J_{C-F} = 3.8$ Hz, CF₃), 81.4 (O-C), 67.4 (NCH), 39.2 (CH₂), 27.9 (CH₃); HPLC analysis: Phenomenex Lux 5u Amylose-2, hexane/dioxane = 95/5, 254 nm, flow rate = 0.5 ml/min, retention times: 12.2 min (R), 13.9 min (S).

Fig.7 ¹H NMR spectra of *tert*-butyl 3-(4-trifluoromethylphenyl)-2-(diphenylmethyleneamino)propanoate

Fig.8 ¹³C NMR spectra of *tert*-butyl 3-(4-trifluoromethylphenyl)-2-(diphenylmethyleneamino)propanoate

Fig.9 The HPLC chromatogram of racemic

Fig.10 The HPLC chromatogram of *tert*-butyl 3-(4-trifluoromethylphenyl)-2-(diphenylmethyleneamino)propanoate catalyzed by **SiO₂@CDPTC**

tert-Butyl 3-(3-trifluoromethylphenyl)-2-(diphenylmethyleneamino)propanoate (Entry 2 in Table 2).

¹H NMR (300.1 MHz, CDCl₃, TMS): δ 7.52 (d, ³*J* = 7.0 Hz, 2H, Ph-H), 7.40–7.21 (m, 10H, Ph-H), 6.57 (d, ³*J* = 6.6 Hz, 2H, Ph-H), 4.09 (dd, ³*J* = 5.6 Hz, 5.6 Hz, 1H, NCH), 3.23–3.21 (m, 2H, CH₂), 1.41 (s, 9H, CH₃); ¹³C NMR (75.0 MHz, CDCl₃, TMS): δ 170.8, 170.3 (C=N, C=O), 139.3, 139.2, 136.1, 133.4, 133.4, 132.4, 130.5, 130.2, 130.1,

130.0, 128.6, 128.4, 128.3, 128.2, 128,1, 127.9, 127.4, 126.4 (q, ${}^{2}J_{C-F} = 3.7$ Hz, CF₃), 125.9 (Ph), 123.0 (q, ${}^{1}J_{C-F} = 3.8$ Hz, CF₃), 81.4 (O-C), 67.3 (NCH), 39.2 (CH₂), 27.9 (CH₃); HPLC analysis: Daicel Chiralpak OD-H column, hexane/dioxane = 95/5, 254 nm, flow rate = 0.5 ml/min, retention times: 13.4 min (S), 15.0 min (R).

Fig.11 ¹H NMR spectra of *tert*-butyl 3-(3-trifluoromethylphenyl)-2-(diphenylmethyleneamino)propanoate

Fig.12 ¹³C NMR spectra of *tert*-butyl 3-(3-trifluoromethylphenyl)-2-(diphenylmethyleneamino)propanoate

Fig.13 The HPLC chromatogram of racemic

Fig.14 The HPLC chromatogram of *tert*-butyl 3-(3-trifluoromethylphenyl)-2-(diphenylmethyleneamino)propanoate catalyzed by **SiO₂@CDPTC**

tert-Butyl 3-(2-trifluoromethylphenyl)-2-(diphenylmethyleneamino)propanoate (Entry 3 in Table 2).

¹H NMR (300.1 MHz, CDCl₃, TMS): δ 7.76 (d, ³*J* = 7.1 Hz, 1H, Ph-H), 7.57–7.41 (m, 4H, Ph-H), 7.35–7.15 (m, 7H, Ph-H), 6.43 (d, ³*J* = 6.4 Hz, 2H, Ph-H), 4.13 (dd, ³*J* = 3.5 Hz, 3.5 Hz, 1H, NCH), 3.50–3.22 (m, 2H, CH₂), 1.39 (s, 9H, CH₃); ¹³C NMR (75.0 MHz, CDCl₃, TMS): δ 170.7, 170.5 (C=N, C=O), 139.2, 136.8 (q, ²*J*_{C-F} = 1.6 Hz), 136.0, 133.3, 132.4,

131.1, 130.2, 131.0, 129.6, 128.7, 128.2, 128,1, 127.9, 127.9, 127.3, 126.3, 126.0 (Ph), 125.7 (q, ${}^{1}J_{C-F} = 5.7$ Hz, CF₃), 81.2 (O-C), 66.5 (NCH), 36.0 (CH₂), 27.9 (CH₃); HPLC analysis: Phenomenex Lux 5u Amylose-2, hexane/dioxane = 95/5, 254 nm, flow rate = 0.5 ml/min, retention times: 12.2 min (R), 14.8 min (S).

Fig.15 ¹H NMR spectra of *tert*-butyl 3-(2-trifluoromethylphenyl)-2-(diphenylmethyleneamino)propanoate

Fig.17 The HPLC chromatogram of racemic *tert*-butyl 3-(2-trifluoromethylphenyl)-2-(diphenylmethyleneamino)propanoate

Fig.18 The HPLC chromatogram of *tert*-butyl 3-(2-trifluoromethylphenyl)-2-(diphenylmethyleneamino)propanoate catalyzed by **SiO₂@CDPTC**

tert-Butyl 3-(4-fluorophenyl)-2-(diphenylmethyleneamino)propanoate (Entry 4 in Table 2).

¹H NMR (300.1 MHz, CDCl₃, TMS): δ 7.53 (d, ³*J* = 6.9 Hz, 2H, Ph-H), 7.35–7.21 (m, 6H, Ph-H), 7.00–6.80 (m, 4H, Ph-H), 6.62 (d, ³*J* = 6.5 Hz, 2H, Ph-H), 4.04 (dd, ³*J* = 4.6 Hz, 4.7 Hz, 1H, NCH), 3.19–3.05 (m, 2H, CH₂), 1.40 (s, 9H, CH₃); ¹³ C NMR (75.0 MHz, CDCl₃, TMS): δ 170.6, 170.4 (C=N, C=O), 163.1, 160.0, 139.3, 134.0, 132.4, 131.2 (d, ²*J*_{C-F} = 7.8 Hz, F), 131.1, 130.9, 130.2, 130.0, 128.6, 128.3, 128.2, 128.1, 128.0,

127.5 (Ph), 114.7, (d, ${}^{1}J_{C-F} = 20.9$ Hz, F), 81.2 (O-C), 67.7 (NCH), 38.7 (CH₂), 28.0 (CH₃); HPLC anal- ysis: Phenomenex Lux 5u Amylose-2, hexane/dioxane = 95/5, 254 nm, flow rate = 0.5 ml/min, retention times: 12.7 min (R), 14.7 min (S).

Fig.19¹H NMR spectra of tert-butyl 3-(4-fluorophenyl)-2-(diphenylmethyleneamino)propanoate

Fig.20 ¹³C NMR spectra of tert-butyl 3-(4-fluorophenyl)-2-(diphenylmethyleneamino)propanoate

Fig.21 The HPLC chromatogram of racemic *tert*-butyl 3-(4-fluorophenyl)-2-(diphenylmethyleneamino)propanoate

Fig.22 The HPLC chromatogram of *tert*-butyl 3-(4-fluorophenyl)-2- (diphenylmethyleneamino)propanoate catalyzed by **SiO₂@CDPTC**

tert-Butyl 3-(3-fluorophenyl)-2-(diphenylmethyleneamino)propanoate (Entry 5 in Table 2).

¹H NMR (300.1 MHz, CDCl₃, TMS): δ 7.49 (d, ³*J* = 6.7 Hz, 2H, Ph-H), 7.26–7.19 (m, 7H, Ph-H), 7.08 (q, ³*J* = 6.6 Hz, 1H, Ph-H), 6.79–6.62 (m, 4H, Ph-H), 6.66 (d, ³*J* = 6.6 Hz, 2H, Ph-H), 4.04 (dd, ³*J* = 3.8 Hz, 3.8 Hz, 1H, NCH), 3.17–3.04 (m, 2H, CH₂), 1.37 (s, 9H, CH₃); ¹³C NMR (75.0 MHz, CDCl₃, TMS): δ 170.5, 170.4 (C=N, C=O),

164.2, 160.9, 140.8 (d, ${}^{3}J_{C-F} = 7.4$ Hz, F), 139.3, 136.2, 132.3, 130.1, 130.0, 128.6, 128.3, 128.2, 128.1, 127.9, 127.5, 125.5, 125.4 (C-Ph), 116.4 (d, ${}^{2}J_{C-F} = 20.9$ Hz, F), 112.9 (d, ${}^{1}J_{C-F} = 20.9$ Hz, F), 81.2 (O-C), 67.4 (NCH), 39.2 (CH₂), 27.9 (CH₃); HPLC analysis: Phenomenex Lu5x 5u Amylose-2, hexane/dioxane = 95/5, 254 nm, flow rate = 0.5 ml/min, retent- ion times: 12.7 min (R), 14.8 min (S).

Fig.23 ¹H NMR spectra of tert-butyl 3-(3-fluorophenyl)-2-(diphenylmethyleneamino)propanoate

Fig.24¹³C NMR spectra of *tert*-butyl 3-(3-fluorophenyl)-2-(diphenylmethyleneamino)propanoate

Fig.25 The HPLC chromatogram of racemic

tert-butyl 3-(3-fluorophenyl)-2-(diphenylmethyleneamino)propanoate

Fig.26 The HPLC chromatogram of *tert*-butyl 3-(3-fluorophenyl)-2-(diphenylmethyleneamino)propanoate catalyzed by **SiO₂@CDPTC**

tert-Butyl 3-(2-fluorophenyl)-2-(diphenylmethyleneamino)propanoate (Entry 6 in Table 2).

¹H NMR (300.1 MHz, CDCl₃, TMS): δ 7.56 (d, ³*J* = 7.1 Hz, 2H, Ph-H), 7.37–7.25 (m, 6H, Ph-H), 7.16–7.11 (m, 2H, Ph-H), 6.98–6.87 (m, 2H, Ph-H), 6.66 (d, ³*J* = 6.6 Hz, 2H, Ph-H), 4.19 (dd, ³*J* = 4.4 Hz, 4.4 Hz, 1H, NCH), 3.36–3.12 (m, 2H, CH₂), 1.44 (s, 9H, CH₃); ¹³C NMR (75.0 MHz, CDCl₃, TMS): δ 170.6, 170.5 (C=N, C=O), 162.9, 159.7,

139.4, 136.1, 132.3, 130.1, 130.0, 128.7, 128.2, 128.2, 128.0, 128.0, 127.9, 127.9, 127.6 (C-Ph), 125.2 (d, ${}^{3}J_{C-F} = 15.5$ Hz, F), 123.5 (d, ${}^{2}J_{C-F} = 3.5$ Hz, F), 114.9 (d, ${}^{1}J_{C-F} = 21.9$ Hz, F), 81.2 (O-C), 66.0 (NCH), 32.6 (CH₂), 27.9 (CH₃); HPLC analysis: Phenomenex Lux 5u Amylose-2, hexane/dioxane = 95/5, 254 nm, flow rate = 0.5 ml/min, retention times: 13.2 min (R), 15.6 min (S).

Fig.27 ¹H NMR spectra of tert-butyl 3-(2-fluorophenyl)-2-(diphenylmethyleneamino)propanoate

Fig.28 ¹³C NMR spectra of tert-butyl 3-(2-fluorophenyl)-2-(diphenylmethyleneamino)propanoate

Fig.29 The HPLC chromatogram of racemic

tert-butyl 3-(2-fluorophenyl)-2-(diphenylmethyleneamino)propanoate

Fig.30 The HPLC chromatogram of *tert*-butyl 3-(2-fluorophenyl)-2-(diphenylmethyleneamino)propanoate catalyzed by **SiO**₂@CDPTC

tert-Butyl 3-(4-methylphenyl)-2-(diphenylmethyleneamino)propanoate (Entry 7 in Table 2).

¹H NMR (300.1 MHz, CDCl₃, TMS): δ 7.81 (d, ³*J* = 7.2 Hz, 1H, Ph-H), 7.58 (d, ³*J* = 7.1 Hz, 2H, Ph-H), 7.39–7.25 (m, 6H, Ph-H), 6.96 (q, ³*J* = 7.9 Hz, 4H, Ph-H), 6.62 (d, ³*J* = 6.6 Hz, 2H, Ph-H), 4.09 (dd, ³*J* = 4.4 Hz, 4.4 Hz, 1H, NCH), 3.23–3.07 (m, 2H, CH₂), 2.28 (s, 3H, Ph-CH₃), 1.44 (s, 9H, CH₃); ¹³C NMR (75.0 MHz, CDCl₃, TMS): δ 170.9,

170.1 (C=N, C=O), 139.5, 137.5, 136.3, 135.5, 135.1, 132.4, 130.0, 129.6, 128.7, 128.2, 128.1, 128.0, 127.9, 127.6 (C-Ph), 81.0 (O-C), 68.0 (N-CH), 39.1 (CH₂), 28.0 (CH₃), 21.0 (Ph-CH₃); HPLC analysis: Phenomenex Lux 5u Amylose-2, hexane/dioxane = 95/5, 254 nm, flow rate = 0.5 ml/min, retention times: 13.0 min (R), 15.4 min (S).

Fig.31 ¹H NMR spectra of tert-butyl 3-(4-methylphenyl)-2-(diphenylmethyleneamino)propanoate

Fig.32 ¹³C NMR spectra of tert-butyl 3-(4-methylphenyl)-2-(diphenylmethyleneamino)propanoate

Fig.33 The HPLC chromatogram of racemic

tert-butyl 3-(4-methylphenyl)-2-(diphenylmethyleneamino)propanoate

Fig.34 The HPLC chromatogram of *tert*-butyl 3-(4-methylphenyl)-2- (diphenylmethyleneamino)propanoate catalyzed by **SiO₂@CDPTC**

tert-Butyl 3-(3-methylphenyl)-2-(diphenylmethyleneamino)propanoate (Entry 8 in Table 2).

¹H NMR (300.1 MHz, CDCl₃, TMS): δ 7.81 (d, ³*J* = 7.2 Hz, 1H, Ph-H), 7.62–7.46 (m, 4H, Ph-H), 7.38–7.26 (m, 7H, Ph-H), 6.59 (d, ³*J* = 6.5 Hz, 2H, Ph-H), 4.09 (dd, ³*J* = 4.5 Hz, 4.3 Hz, 1H, NCH), 3.23– 3.08 (m, 2H, CH₂), 2.22 (s, 3H, Ph-CH₃), 1.45 (s, 9H, CH₃); ¹³C NMR (75.0 MHz, CDCl₃, TMS): δ 170.8, 170.2 (C=N, C=O), 139.5, 138.1,

137.4, 136.3, 132.4, 132.3, 130.6, 130.0, 130.0, 128.6, 128.2, 128.2, 128.1, 127.9, 127.8, 127.7, 126.8, 126.7 (C-Ph), 81.0 (O-C), 67.8 (NCH), 39.4 (CH₂), 28.0 (CH₃), 21.1 (Ph-CH₃); HPLC analysis: Phenomenex Lux 5u Amylose-2, hexane/dioxane = 95/5, 254 nm, flow rate = 0.5 ml/min, retention times: 14.0 min (R), 16.3 min (S).

Fig.35 ¹H NMR spectra of *tert*-butyl 3-(3-methylphenyl)-2-(diphenylmethyleneamino)propanoate

Fig.36¹³C NMR spectra of tert-butyl 3-(3-methylphenyl)-2-(diphenylmethyleneamino)propanoate

Fig.37 The HPLC chromatogram of racemic

tert-butyl 3-(3-methylphenyl)-2-(diphenylmethyleneamino)propanoate

Fig.38 The HPLC chromatogram of *tert*-butyl 3-(3-methylphenyl)-2-(diphenylmethyleneamino)propanoate catalyzed by **SiO₂@CDPTC**

tert-Butyl 3-(2-methylphenyl)-2-(diphenylmethyleneamino)propanoate (Entry 9 in Table 2).

¹H NMR (300.1 MHz, CDCl₃, TMS): δ 7.60 (d, ³*J* = 7.2 Hz, 2H, Ph-H), 7.35–7.23 (m, 6H, Ph-H), 7.09–7.04 (m, 4H, Ph-H), 6.52 (d, ³*J* = 4.1 Hz, 2H, Ph-H), 4.15 (dd, ³*J* = 3.9 Hz, 3.9 Hz, 1H, NCH), 3.33–3.15 (m, 2H, CH₂), 2.06 (s, 3H, Ph-CH₃), 1.39 (s, 9H, CH₃); ¹³C NMR (75.0 MHz, CDCl₃, TMS): δ 171.0, 170.1 (C=N, C=O), 139.3, 136.9, 136.3, 136.2,

132.4, 131.0, 130.0, 130.0, 129.9, 128.7, 128.2, 128.1, 127.9, 127.8, 127.6, 126.3, 125.9, 125.5 (Ph-C), 81.0 (O-C), 66.4 (NCH), 36.7 (CH₂), 28.0 (CH₃), 19.2 (Ph-CH₃); HPLC analysis: Phenomenex Lux 5u Amylose-2, hexane/dioxane = 95/5, 254 nm, flow rate = 0.5 ml/min, retention times: 12.3 min (R), 14.6 min (S).

Fig.39 ¹H NMR spectra of *tert*-butyl 3-(2-methylphenyl)-2-(diphenylmethyleneamino)propanoate

Fig.40 ¹³C NMR spectra of tert-butyl 3-(2-methylphenyl)-2-(diphenylmethyleneamino)propanoate

Fig.41 The HPLC chromatogram of racemic *tert*-butyl 3-(2-methylphenyl)-2-(diphenylmethyleneamino)propanoate

D	AD1 A, Sig=254	,4 Ref=360,100	(FENGDAN/2014	10613-14 2-CH3.	D)							
mAU .	Entry	Time	Area	Height	Wedth	Symmetry	Area%]	14 .548			
-	1	12.271	84.9	5.6	0.2513	0.691	1.566		1			
-		14.340	0000.9	232.4	0.3623	0.705	90.434]				
-		L N L	k									
150		$\land \lor$										
-		≫н,с∕	/									
100 -												
-												
50 -												
-								-271				
- 0 -								_12]			
-		2	4	6			10	12	14	16	18	

Fig.42 The HPLC chromatogram of *tert*-butyl 3-(2-methylphenyl)-2-(diphenylmethyleneamino)propanoate catalyzed by **SiO₂@CDPTC**

tert-Butyl 3-(2-naphthyl)-2-(diphenylmethyleneamino)propanoate (Entry 10 in Table 2).

¹H NMR (600.1 MHz, CDCl₃, TMS): δ 7.78 (d, ³*J* = 7.6 Hz, 1H, Ar-H), 7.73 (d, ³*J* = 7.2 Hz, 1H, Ar-H), 7.64 (dd, ³*J* = 17.6, 12.3 Hz, 2H, Ar-H), 7.54 (t, ³*J* = 8.0 Hz, 2H, Ar-H), 7.45 (dd, ³*J* = 19.8, 12.2 Hz, 2H, Ar-H), 7.40 – 7.35 (m, 2H, Ar-H), 7.32 (dd, ³*J* = 15.5, 8.1 Hz, 1H, Ar-H), 7.22 – 7.11 (m, 4H, Ar-H), 6.52 (s, 2H, Ar-H), 4.22 (dd, ³*J* =

9.2, 4.2 Hz, 1H, NCH), 3.34 (ddd, ³*J* = 22.7, 13.5, 6.8 Hz, 2H, CH₂), 1.42 (s, 9H, CH₃); ¹³C NMR (150.9 MHz, CDCl₃, TMS): δ 170.85, 170.39(C=N, C=O), 139.62, 137.71, 136.37, 135.99, 133.51, 132.38, 132.19, 130.10, 130.05, 128.75, 128.42, 128.29, 128.24, 128.02, 127.94, 127.72, 127.62, 127.56, 127.51, 126.15, 125.77, 125.25, 81.18 (O-C), 67.94 (N-C), 39.83 (CH₂), 28.11 (CH₃); HPLC analysis: Phenomenex Lux 5u Amylose-2, hexane/

/dioxane = 95/5, 254 nm, flow rate = 0.5 ml/min, retention times: 17.3 min (R), 21.1 min (S).

Fig.43 ¹H NMR spectra of tert-butyl 3-(2-naphthyl)-2-(diphenylmethyleneamino)propanoate

Fig.44 ¹³C NMR spectra of tert-butyl 3-(2-naphthyl)-2-(diphenylmethyleneamino)propanoate

Fig.45 The HPLC chromatogram of racemic *tert*-butyl 3-(2-naphthyl)-2-(diphenylmethyleneamino)propanoate

Fig.46 The HPLC chromatogram of *tert*-butyl 3-(2-naphthyl)-2-(diphenylmethyleneamino)propanoate catalyzed by **SiO₂@CDPTC**

tert-Butyl 3-vinyl-2-(diphenylmethyleneamino)propanoate (Entry 11 in Table 2).

¹H NMR (600.1 MHz, CDCl₃, TMS): δ 7.72 – 7.68 (m, 2H, Ph-H), 7.56 (d, ³*J* = 7.3 Hz, 1H, Ph-H), 7.46 (t, ³*J* = 7.4 Hz, 1H, Ph-H), 7.36 (t, ³*J* = 7.8 Hz, 2H, Ph-H), 7.32 (dd, ³*J* = 8.8, 6.2 Hz, 1H, Ph-H), 7.20 (dt, ³*J* = 5.2, 3.8 Hz, 2H, Ph-H), 7.08 (dd, ³*J* = 7.5, 1.6 Hz, 1H, Ph-H), 5.64 (ddt, ³*J* = 17.2, 10.2, 7.1 Hz, 1H, -CH=), 4.95 (ddd, ³*J* = 13.6, 11.2, 1.1 Hz,

2H, =CH₂), 3.93 (dd, ${}^{3}J$ = 7.6, 5.3 Hz, 1H, NCH), 2.62 – 2.50 (m, 2H, CH₂), 1.35 (s, 9H, CH₃); ${}^{13}C$ NMR (150.9 MHz, CDCl₃, TMS): 170.85, 170.08 (C=O, C=N), 139.79, 137.70, 136.72, 134.78, 132.38, 130.02, 128.84, 128.54, 128.41, 128.29, 127.99, 127.98, 117.22, 80.97(O-C), 65.92 (N-CH), 38.17 (CH₂), 28.12 (CH₃); HPLC analysis: Phenomenex Lux 5u Amylose-2, hexane/dioxane = 95/5, 254 nm, flow rate = 0.5 ml/min, retention times: 12.1 min (R), 13.6 min (S).

Fig.47 ¹H NMR spectra of tert-butyl 3-vinyl-2-(diphenylmethyleneamino)propanoate

Fig.48 ¹³C NMR spectra of tert-butyl 3-vinyl-2-(diphenylmethyleneamino)propanoate

0	AD1 A, Sig=254	,4 Ref=360,100	(FENGDAN/1406	13 ALLYL RACE	EMATE.D)						
mAU -	Entres	T	à	TT-1-1-4	777441.	Constant	Aures 07	1 8	570		
F00	Enu y	1 mile	Alea	neight	weath	Symmetry	Alea %	1 Ă	À		
500-		[mm]	[mAU*s]	[mAU]	[mm]	factor		4 //			
-	1	12.085	14501.2	514.8	0.4695	1.134	50.312	4 11			
-	2	13.57	14321.4	516.3	0.4623	0.942	49.688	1 11			
- 400 -											
-		╨╱╹	L.L								
300 -											
-		×									
200 -											
-											
-								- 11			
100 -									-1		
-											
-									\checkmark		
0											
0		2	4	6		8	10	12	14	16	min

Fig.49 The HPLC chromatogram of racemic *tert*-butyl 3-vinyl-2-(diphenylmethyleneamino)propanoate

Fig.50 The HPLC chromatogram of *tert*-butyl

3-vinyl-2-(diphenylmethyleneamino)propanoate catalyzed by SiO₂@CDPTC

tert-Butyl 3-(1-methylvinyl)-2-(diphenylmethyleneamino)propanoate (Entry 12 in Table 2).

¹H NMR (600.1 MHz, CDCl₃, TMS): δ 7.66 (dd, ³*J* = 26.3, 7.8 Hz, 2H, Ph-H), 7.49 – 7.41 (m, 3H, Ph-H), 7.38 – 7.34 (m, 1H, Ph-H), 7.30 (t, ³*J* = 7.4 Hz, 2H, Ph-H), 7.19 (t, ³*J* = 14.0 Hz, 2H, Ph-H), 4.72 (d, ³*J* = 14.0 Hz, 2H, =CH₂), 4.08 (dd, ³*J* = 7.9, 5.3 Hz, 1H, NCH), 2.67 – 2.54 (m, 2H, CH₂), 1.52 (s, 3H, CH₃), 1.45 (s, 9H, CH₃); ¹³C NMR (150.9 MHz,

CDCl₃, TMS): δ 171.17, 169.84 (C=N, C=O), 141.92, 139.83, 136.56, 132.36, 130.09, 130.03, 128.83, 128.50, 128.30, 128.11, 127.94, 113.27, 80.98 (O-C), 64.91 (N-CH), 41.90 (CH₂), 28.08 (CH₃), 22.61 (CH₃); HPLC analysis: Phenomenex Lux 5u Amylose-2, hexane/dioxane = 95/5, 254 nm, flow rate = 0.5 ml/min, retention times: 12.2 min (R), 13.8 min (S).

Fig.51 ¹H NMR spectra of *tert*-butyl 3-(1-methylvinyl)-2-(diphenylmethyleneamino)propanoate

Fig.52 ¹³C NMR spectra of tert-butyl 3-(1-methylvinyl)-2-(diphenylmethyleneamino)propanoate

Fig.53 The HPLC chromatogram of racemic *tert*-butyl 3-(1-methylvinyl)-2-(diphenylmethyleneamino)propanoate

Fig.54 The HPLC chromatogram of *tert*-butyl 3-(1-methylvinyl)-2-(diphenylmethyleneamino)propanoate catalyzed by **SiO₂@CDPTC**

tert-Butyl 3-ethynyl-2-(diphenylmethyleneamino)propanoate (Entry 13 in Table 2).

¹H NMR (600.1 MHz, CDCl₃, TMS): δ 7.81 (d, ³*J* = 7.2 Hz, 1H, Ph-H), 7.66 (d, ³*J* = 7.4 Hz, 2H, Ph-H), 7.51 – 7.43 (m, 4H, Ph-H), 7.40 (t, ³*J* = 7.3 Hz, 1H, Ph-H), 7.33 (t, ³*J* = 7.6 Hz, 2H, Ph-H), 4.18 (dd, ³*J* = 8.1, 5.2 Hz, 1H, NCH), 2.84 – 2.76 (m, 2H, CH₂), 1.95 (t, ³*J* = 2.6 Hz, 1H, =CH), 1.45 (s, 9H, CH₃); ¹³C NMR (150.9 MHz, CDCl₃, TMS) δ 171.4,

169.5 (C=N, C=O), 139.6, 137.7, 136.3, 132.4, 130.3, 130.0, 129.0, 128.6, 128.3, 128.3, 128.0 (Ph-C), 81.6 (\equiv CH), 81.3 (O-C), 70.0 (\equiv C-), 64.8 (N-C), 28.0 (CH₃), 23.4 (CH₂); HPLC analysis: Phenomenex Lux 5u Amylose-2, hexane/dioxane = 95/5, 254 nm, flow rate = 0.5 ml/min, retention times: 13.6 min (R), 16.3 min (S).

Fig.55 ¹H NMR spectra of tert-butyl 3-ethynyl-2-(diphenylmethyleneamino)propanoate

Fig.56 ¹³C NMR spectra of tert-butyl 3-ethynyl-2-(diphenylmethyleneamino)propanoate

Fig.57 The HPLC chromatogram of racemic *tert*-butyl 3-ethynyl-2-(diphenylmethyleneamino)propanoate

Fig.58 The HPLC chromatogram of *tert*-butyl

3-ethynyl-2-(diphenylmethyleneamino)propanoate catalyzed by SiO2@CDPTC

tert-Butyl 3-(4-nitrophenyl)-2-(diphenylmethyleneamino)propanoate (Entry 14 in Table 2).

¹H NMR (600.1 MHz, CDCl₃, TMS) δ 8.00 (d, ³*J* = 8.7 Hz, 2H, Ph-H), 7.76 – 7.73 (m, 1H, Ph-H), 7.52 (dd, ³*J* = 17.6, 7.4 Hz, 2H, Ph-H), 7.42 (t, ³*J* = 7.7 Hz, 1H, Ph-H), 7.33 (dd, ³*J* = 14.3, 7.3 Hz, 2H, Ph-H), 7.19 (d, ³*J* = 7.4 Hz, 4H, Ph-H), 6.65 (d, ³*J* = 6.1 Hz, 2H, Ph-H), 4.14 – 4.10 (m, 1H, NCH), 3.25 (d, ³*J* = 5.7 Hz, 2H, CH₂), 1.38 (s, 9H,

CH₃); ¹³C NMR (150.9 MHz, CDCl₃) δ 170.0, 169.1 (C=N, C=O), 145.7, 145.5, 138.1, 136.7, 135.0, 131.4, 129.7, 129.5, 129.0, 127.7, 127.6, 127.3, 127.3, 127.1, 126.5, 122.9, 122.8, 122.2 (Ph-C), 80.7 (O-C), 66.0 (N-C), 38.4 (CH₂), 27.0 (CH₃); HPLC analysis: Phenomenex Lux 5u Amylose-2, hexane/dioxane = 90/10, 254 nm, flow rate = 0.5 ml/min, retention times: 19.6 min (R), 24.1 min (S).

Fig.59 ¹H NMR spectra of tert-butyl 3-(4-nitrophenyl)-2-(diphenylmethyleneamino)propanoate

Fig.60 ¹³C NMR spectra of *tert*-butyl 3-(4-nitrophenyl)-2-(diphenylmethyleneamino)propanoate

Fig.61 The HPLC chromatogram of racemic

tert-butyl 3-(4-nitrophenyl)-2-(diphenylmethyleneamino)propanoate

Fig.62 The HPLC chromatogram of *tert*-butyl 3-(4-nitrophenyl)-2-(diphenylmethyleneamino)propanoate catalyzed by **SiO₂@CDPTC**

tert-Butyl 3-(3-nitrophenyl)-2-(diphenylmethyleneamino)propanoate (Entry 15 in Table 2).

¹H NMR (600.1 MHz, CDCl₃, TMS): δ 8.04 (ddd, ³*J* = 8.1, 2.2, 0.9 Hz, 1H, Ph-H), 7.95 – 7.94 (m, 1H, Ph-H), 7.82 – 7.80 (m, 1H, Ph-H), 7.59 – 7.56 (m, 2H, Ph-H), 7.48 (dd, ³*J* = 18.0, 7.8 Hz, 1H, Ph-H), 7.37 (dd, ³*J* = 6.8, 5.3 Hz, 2H, Ph-H), 7.34 – 7.29 (m, 4H, Ph-H), 6.72 (d, ³*J* = 6.1 Hz, 2H, Ph-H), 4.19 (dd, ³*J* = 8.2, 5.1 Hz, 1H, NCH), 3.35

-3.26 (m, 2H, CH₂), 1.45 (s, 9H, CH₃); ¹³C NMR (150.9 MHz, CDCl₃) δ 171.1, 170.1 (C=N, C=O), 148.1, 140.6, 139.1, 137.7, 136.2, 136.1, 132.4, 130.5, 130.0, 128.9, 128.8, 128.7, 128.3, 128.3, 128.1, 127.5, 124.7, 121.4 (Ph-C), 81.7 (O-C), 67.0 (N-C), 39.2 (CH₂), 28.0 (CH₃); HPLC analysis: Phenomenex Lux 5u Amylose-2, hexane/dioxane = 90/10, 254 nm, flow rate = 0.5 ml/min, retention times: 20.0 min (R), 25.2 min (S).

Fig.63 ¹H NMR spectra of tert-butyl 3-(3-nitrophenyl)-2-(diphenylmethyleneamino)propanoate

Fig.64 ¹³C NMR spectra of tert-butyl 3-(3-nitrophenyl)-2-(diphenylmethyleneamino)propanoate

Fig.65 The HPLC chromatogram of racemic *tert*-butyl 3-(3-nitrophenyl)-2-(diphenylmethyleneamino)propanoate

Fig.66 The HPLC chromatogram of *tert*-butyl 3-(3-nitrophenyl)-2-(diphenylmethyleneamino)propanoate catalyzed by **SiO₂@CDPTC**

tert-Butyl 3-(2-nitrophenyl)-2-(diphenylmethyleneamino)propanoate (Entry 7 in Table 2).

¹H NMR (600.1 MHz, CDCl₃, TMS): δ 8.05 – 7.98 (m, 1H, Ph-H), 7.97 – 7.88 (m, 1H, Ph-H), 7.80 (dd, ³*J* = 8.2, 3.4 Hz, 1H, Ph-H), 7.76 – 7.74 (m, 1H, Ph-H), 7.66 – 7.60 (m, 1H, Ph-H), 7.51 (dd, ³*J* = 7.0, 4.3 Hz, 2H, Ph-H), 7.45 – 7.36 (m, 2H, Ph-H), 7.32 (d, ³*J* = 6.8 Hz, 2H, Ph-H), 7.20 (d, ³*J* = 4.7 Hz, 2H, Ph-H), 6.56 (s, 1H, Ph-H), 4.29 – 4.24 (m, 1H,

NCH), 3.48 - 3.32 (m, 2H, CH₂), 1.38 (s, 9H, CH₃); ¹³C NMR (150.9 MHz, CDCl₃, TMS): δ 170.04, 169.19 (C=N, C=O), 148.70, 138.22, 136.68, 135.00, 133.10, 131.41, 131.36, 129.29, 129.02, 128.32, 127.78, 127.47, 127.26, 127.17, 126.94, 126.42, 123.62, 123.58, 80.43 (O-C), 64.96 (N-C), 35.40 (CH₂), 27.02 (CH₃); HPLC analysis: Phenomenex Lux 5u Amylose-2, hexane/dioxane = 90/10, 254 nm, flow rate = 0.5 ml/min, retention times: 19.1 min (R), 23.7 min (S).

Fig.67 ¹H NMR spectra of tert-butyl 3-(2-nitrophenyl)-2-(diphenylmethyleneamino)propanoate

Fig.68 ¹³C NMR spectra of tert-butyl 3-(2-nitrophenyl)-2-(diphenylmethyleneamino)propanoate

Fig.69 The HPLC chromatogram of racemic *tert*-butyl 3-(2-nitrophenyl)-2-(diphenylmethyleneamino)propanoate

Fig.70 The HPLC chromatogram of *tert*-butyl 3-(2-nitrophenyl)-2-(diphenylmethyleneamino)propanoate catalyzed by **SiO₂@CDPTC**

X-ray diffraction and elemental analysis of SiO₂@CDPTC

X-ray powder diffractions were carried out on an XRD-7000 S/L instrument: Cu-K α radiation, X-ray tube settings of 40.0kV/30.0 mA, a scan speed of 2°/min in the 10–100° (2 θ) range. X-ray diffraction of SiO₂@CD/PTC (Fig. 71) indicate that the structure is amorphous.

Fig.71 X-ray diffraction patterns of SiO₂@CDPTC

The recovery and reuse of catalyst

The data of the yields and enantioselectivities of α -alkylation product *tert*-Butyl 3-phenyl-2-(diphen- ylmethyleneamino)propanoate in reused process were shown in the following **Table 1** and **Fig. 72**.

Table 1 Reusability of SiO2@CDPTC under optimized reaction conditions

Entry	Temp.(°C)	Reaction times	Yield ^a (%)	%ee ^b
1	-40	1	95	96.3
2	-40	2	93	94.7
3	-40	3	92	94.0
4	-40	4	90	93.0
5	-40	5	88	91.6
6	-40	6	80	91.2

Reaction conditions: 20 mol% **SiO**₂@**CDPTC**, -40 °C, benzyl bromide (2.5 mmol), *N*-(diphenylmethylene)glycine ethyl ester (150.0 mg, 0.51 mmol), 50% aq KOH (1.0 mL, 13.4 mmol), 4.0 mL toluene. ^{*a*} Isolated yield. ^{*b*} Determined by chiral HPLC with Phenomenex Lux 5u Amylose-2 chiral column.

D	DAD1 A, Sig=254,4 Ref=380,100 (FEN3DAN20140718-1E.D)										
mAU _ 160 -	Entry	Time	Area [m All*a]	Height	Wedth	Symmetry	Area %]	16 ,424		
-	1	13.589	202.6	9	0.3753	1.229	4.415				
140 -	2	16.424	4386	160.9	0.4543	0.821	95.585]			
120 -	20- Quilt										
100 -	SiO ₂ @CDPTC reused for the fifth time										
80 -											
60 -											
40											
-								8			
20-								13.5			
0 -								× `\			
ó		2.5	5		7.5	10		12.5	15	17.5	min

Fig.72 The HPLC chromatogram of *tert*-butyl 3-phenyl-2-(diphenylmethyleneamino)propanoate in the six times

DAD1 A, Sig=254,4 Ref=360,100 (FENGDAN/141209-5 3-CF3(0D-H).D)

DAD1 A, Sig=254,4 Ref=380,100 (FENGDAN/141209-42-CF3.D) mAU
 Time
 Area
 Height

 [min]
 [mAU*s]
 [mAU]

 11.159
 52.4
 3.6

 13.881
 3465.6
 152.1
Entry Ĵ K \bigcirc T min

DAD1 A, Sig=254,4 Ref=360,100 (FENGDAN\141208-1 2-F.D) mAU
 Time
 Area
 Height
 Wedth
 Symmetry

 [min]
 [mAU*s]
 [mAU]
 [min]
 factor
Entry Area % 300 1.657
 13.892
 222
 12.2

 16.345
 13175.3
 317.5
0.3037 0.79 0.8 98.343 250 ìL δ,Ό 200 150 100 50 -13.892 0 2 4 . 8 10 12 14 16 18 ó

Fig.73 HPLC chromatogram of various electrophiles catalyzed by homogeneous CDPTC

N₂ adsorption–desorption isotherm of deeply hydrolytic SiO₂@CDPTC

Fig.74 N₂ adsorption–desorption isotherms of deeply hydrolytic **SiO₂@CDPTC** and pore size distributions from BJH analysis based on desorption isotherm

An analogues of CDPTC

To a round-bottomed flask (100 mL) was charged with *N*-(2-cyanobenzyl)-O(9)-allyl- cinchonidinium bromide (265.3 mg, 0.5 mmol), mercaptan (124.3 mg, 2.0 mmol) and AIBN (16.4 mg, 0.1 mmol), flushed three times with Ar atmosphere and sealed. Then CHCl₃ (30 mL) was added by a syringe and the reaction mixture was refluxed for 72 h at 80 °C with the tracking of TLC. During the reaction, AIBN (16.4 mg, 0.1 mmol) was added once per 24 hours. After the solvent was evaporated under reduced pressure, the residue was subjected to flash column chromatography by gradient elution with CHCl₃/CH₃OH ($\nu/\nu = 60/1 \rightarrow 30/1 \rightarrow 15/1$) to obtain the pale yellow solid (474.1 mg, 80%).

¹H NMR (600.1 MHz, CD₃OD, TMS) δ 9.02 (d, ³*J* = 4.5 Hz, 1H, Ph-H), 8.42 (d, ³*J* = 8.1 Hz, 1H, Ph-H), 8.22 (d, ³*J* = 7.6 Hz, 1H, Ph-H), 8.19 (dd, ³*J* = 7.5, 6.7 Hz, 1H, Ph-H), 8.06 (d, ³*J* = 7.7 Hz, 1H, Ph-H), 7.96 (dd, ³*J* = 11.1, 4.3 Hz, 1H, Ph-H), 7.94 – 7.86 (m, 3H, Ph-H), 7.84 (t, ³*J* = 7.7 Hz, 1H, Ph-H), 6.55 (d, ³*J* = 18.7 Hz, 1H, O-

CH), 6.33 - 6.24 (m, 1H, -CH=), 5.78 - 5.69 (m, 1H, =CH₂), 5.49 (dd, ${}^{3}J = 17.2$, 1.1 Hz, 1H, =CH₂), 5.38 (dt, ${}^{3}J = 14.9$, 11.7 Hz, 3H, N⁺-CH, N⁺-CH₂), 5.22 (dd, ${}^{3}J = 16.5$, 8.3 Hz, 1H, O-CH₂), 5.03 (t, ${}^{3}J = 9.2$ Hz, 1H, O-CH₂), 4.58 (ddd, ${}^{3}J = 16.3$, 11.3, 5.0 Hz, 1H, N⁺-CH₂), 4.45 (dd, ${}^{3}J = 11.9$, 5.9 Hz, 1H, N⁺-CH₂), 4.17 (ddd, ${}^{3}J = 25.7$, 14.2, 7.2 Hz, 2H, N⁺-CH₂), 3.97 (ddd, ${}^{3}J = 12.5$, 8.6, 4.4 Hz, 1H, S-CH₂), 3.77 - 3.63 (m, 2H, S-CH₂), 3.45 (td, ${}^{3}J = 11.3$, 4.3 Hz, 1H, S-CH₂), 2.84 - 2.77 (m, 1H, CH), 2.62 (q, ${}^{3}J = 7.4$ Hz, 1H, CH), 2.48 - 2.41 (m, 1H, CH₂), 2.31 - 2.24 (m, 1H, CH₂), 2.15 (t, ${}^{3}J = 8.8$ Hz, 1H, CH₂), 2.02 - 1.94 (m, 1H, CH₂), 1.58 - 1.51 (m, 2H, CH₂), 1.33 (ddd, ${}^{3}J = 23.4$, 16.8, 7.1 Hz, 3H, CH₃); 13 C NMR (150.9 MHz, CD₃OD, TMS) δ 149.61, 147.88, 141.55, 137.06, 135.67, 134.09, 133.57, 133.12, 131.37, 130.00, 129.18, 128.15, 125.42, 122.97, 120.01, 118.31, 117.72, 116.37, 72.82, 70.14, 68.72, 61.70, 60.89, 52.12, 37.55, 29.32, 27.86, 26.28, 25.27, 24.58, 21.74, 13.82.

By comparison of ¹H NMR spectra, it was found that the peaks of hydrogens attached to endocyclic carbon-carbon double bond disappeared, which demonstrated that the free radical addition of sulfydryl in 3-MPTS was added to endocyclic carbon-carbon double bond.

