Electronic Supplementary Information (ESI)

3D printed O₂ indicators

Dilidaer Yusufu, Ri Han and Andrew Mills*

S1: Absorption and emission wavelength of the PtTFPP dye in different media

Sensor	λ_{max} absorption	λ_{max} emission	Ref
	(nm)	(nm)	
PtTFPP in toluene	390, 504, 538	647, 705 (sh)	1
3D printed PtTFPP/SiO ₂ /LDPE dot	390, 509, 543	642	This work
3D printed PtTFPP/SiO ₂ /PLA dot	390, 509, 543	645	This work
FOSPOR	-	643	This work
PtTFPP-PS	395, 508, 541	650	2

Table S1.1: Absorption and emission wavelength of the PtTFPP dye in different media

Sh: shoulder peak

[1] Lai, Siu-Wai, Yuan-Jun Hou, Chi-Ming Che, Hei-Leung Pang, Kwok-Yin Wong, Chi K. Chang, and Nianyong Zhu, *Inorg. Chem.*, 2004, **43**, 3724-3732.

[2] Lee, Sang-Kyung, and Ichiro Okura, Anal. Commun., 1997, **34**, 185-188.

Figure S1.1: Typical absorbance spectra with insert emission spectra of the 3D printed PtTFPP/SiO₂/LDPE dot.

S2: FOSPOR dot O₂ sensitivity characteristics

 O_2 -sensitivity of the FOSPOR dot was measured upon excitation at 390 nm, purging with different Ar/O_2 mixes of gas, each with a defined $%O_2$.

Figure S2.1: Emission spectra of FOSPOR dot upon exposure to (from top to bottom) 0, 5, 10, 20, 40, 60, 80, 100 % O₂.

Figure S2.2: Stern - Volmer plot generated using the data in figure S2.1 above, from which values of $K_{sv} = 0.0586 \pm 0.0007 \% O_2^{-1}$ and PO₂ (S=1/2) = 17.1 %O₂ were calculated.

S3: Response and recoveries

Repeated response and recovery were tested upon excitation at 390 nm and purging with alternative streams of pure argon and 100% oxygen.

Figure S3.1: Response and recovery plot of 3D printed PtTFPP/SiO₂/LDPE dot. The 90% response and recovery times were calculated from the data above to be $t_{\downarrow 90} = 3$ s and $t_{\uparrow 90} = 75$ s.

Figure S3.2: Response and recovery plot of 3D printed PtTFPP/SiO₂/PLA dot. The 90% response and recovery times were calculated from the data above to be $t_{\downarrow 90} = 41$ s and $t_{\uparrow 90} = 118$ s.

Figure S3.3: Response and recovery plot of FOSPOR dot. The 90% response and recovery times were calculated from the data above to be $t_{\downarrow 90} = 3$ s and $t_{\uparrow 90} = 6$ s.

S4: Arrhenius plots

Temperature sensitivity was measured for each of the PtTFPP/SiO₂/LDPE, PtTFPP/SiO₂/PLA and FOSPOR O₂ indicators by recording the variation of fluorescence intensity as a function of %O₂, at a series of different temperatures spanning the range 5 – 35 °C. The Stern-Volmer plots arising from this data generated a range of values of K_{sv}' as a function of temperature, T. An Arrhenius plot of this data, *i.e.* ln(K_{sv}') vs T, for each of the O₂ indicators each yielded a good straight line, from the gradient of which a value of the activation energy, - Δ H, associated with K_{sv}' was calculated.

Figure S4: $Ln(K_{sv}')$ vs T⁻¹ plots of the 3D printed PtTFPP/SiO₂/LDPE dot (black dot), 3D printed PtTFPP/SiO₂/PLA dot (open circle), and the FOSPOR dot (grey dot). From which - Δ H value of 23.3 ± 0.8 kJ mol⁻¹, 16.5 ± 0.3 kJ mol⁻¹, and 13.1 ± 1.5 kJ mol⁻¹ can be calculated respectively.