Chemically robust succinimide group-assisted irreversible bonding of poly(dimethylsiloxane)–thermoplastic microfluidic devices at room temperature

Rajamanickam Sivakumar^a, and Nae Yoon Lee*^b

 ^a Department of Industrial and Environmental Engineering, College of Industrial Environmental Engineering, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
^{b*} Department of BioNano Technology, Gachon University, 1342 Seongnam-daero, Sujeong-gu, Seongnam-si, Gyeonggi-do, 13120, Korea.
E-mail: nylee@gachon.ac.kr (Prof. N.Y.Lee)

Fig S1. High resolution XPS spectra for PC. (a) survey spectrum, (b) C1s, and (c) O1s.

Fig S2. High resolution XPS spectra for APTES-coated PC. (a) C1s, (b) O1s, (c) N1s (d) Si2p and (e) survey spectrum.

Fig S3. Results of delamination test when various substrates (PMMA, PS, PC, and PET) were used for bonding with PDMS.

Fig S4. Schematic illustration of leakage test.

Table S1

Atomic ratio of pristine PDMS and TESPSA coated PDMS

Substrate	Spectrum	Atomic ratio (%)
Pristine PDMS TESPSA coated PDMS	Ols	42.9
	C1s	40.1
	Si2p	16.8
	O1s	41.0
	C1s	41.1
	Si2p	17.8