Electronic Supplementary Material (ESI) for Analyst. This journal is © The Royal Society of Chemistry 2020

² Facile and rapid synthesis of color-tunable
³ molybdenum oxide quantum dots as a versatile probe
⁴ for fluorescence imaging and environmental
⁵ monitoring

Electronic Supplementary Information

- 6 Haiyan Cao, *a# Mingjie Tang, b# Xin Wang c and Wenbing Shi a
- 7 ^a The Key Laboratory of Chongqing Inorganic Special Functional Materials; College of Chemistry
- 8 and Chemical Engineering, Yangtze Normal University, Chongqing 408100, China.
- 9 ^b Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences,
- 10 Chongqing 400714, China.
- 11 ^c College of Chemistry and Chemical Engineering, Southwest University, Chongqing 400715,
- 12 China.

1

- 13 *Corresponding authors. Tel./Fax: +86-23-72793565 (H. Cao).
- [#] Contributed equally to this work.
- 15 E-mail addresses: caohaiyan@yznu.edu.cn (H. Cao)

Sample	Ration of Mo ⁶⁺ to	Mo 3d _{5/2}		Mo 3d _{3/2}	
	Mo ⁵⁺	Centre (eV)	Area	Centre (eV)	Area
MoO _x (pH 9.0)	1.6588	232.6 (+6)	8923.8	235.7 (+6)	4923.8
		231.4 (+5)	4723.8	234.5 (+5)	3623.8
MoO _x (pH 5.0)	1.5134	232.6 (+6)	10814.3	235.7 (+6)	7087.2
		231.4 (+5)	7814.3	234.5 (+5)	4014.3
MoO _x (pH 2.0)	0.9149	232.6 (+6)	4965.1	235.7 (+6)	3204.8
		231.4 (+5)	5165.1	234.5 (+5)	3765.1

16 **Table S1.** Photoelectron binding energies of Mo 3d level XPS spectra in different pH.

17 **Table S2.** Photoelectron binding energies of P 2p level XPS spectra in different pH.

Sample	P 2p _{3/2}		P 2p _{1/2}		
	Centre (eV)	Area	Centre (eV)	Area	
MoO _x (pH 9.0)	129.3 (Mo-P)	108.8	131.5 (Mo-P)	67.8	
	132.6 (oxygenated P)	73.8	133.7 (oxygenated P)	194.0	
MoO _x (pH 5.0)	129.3 (Mo-P)	14.1	131.5 (Mo-P)	32.3	
	132.6 (oxygenated P)	199.3	133.7 (oxygenated P)	418.3	

18 Table S3. Fluorescence lifetimes obtained with two-exponential fit of the

19 fluorescence decay curves of the N,P-MoO_x QDs in pH 9.0, 2.0, respectively.

Samples	τ_1/ns	\mathbf{A}_{1}	τ_2/ns	A ₂	τ ₃ /ns	A ₃	τ/ns
N,P-MoO _x (pH 9.0)	0.1642	-166.0675	0.5092	386.7519	3.4454	91.5874	2.4382
N,P-MoO _x (pH 2.0)	0.7175	264.4625	4.2277	45.0684	/	/	2.4762

21 Fig. S1 (a) DLS spectra of green emission N,P-MoO_x QDs solution (black line) and

22 blue emission N,P-MoO_x QDs; (b) HRTEM image of green emission N,P-MoO_x QDs.

24 Fig. S2 (a) Emission spectra of green emission N,P-MoO_x QDs at excitation 25 wavelengths from 365 to 455 nm; (b) Emission spectra of blue emission N,P-MoO_x

26 QDs at excitation wavelengths from 320 to 410 nm.

29 Mo₉O₂₆ (JCPDS NO. 05-0441). (b) Raman spectrum of N,P-MoO_x QDs.

31 Fig. S4 XPS spectra in the Mo 3d (a) and P 2p (b) regions under different pH

32 conditions.

34 Fig. S5 XPS spectrum in the O 1s (a) and N 1s (b) region of N,P-MoO_x QDs.

38 Fig. S6 The fluorescence spectra of N,P-MoO_x QDs (a) from different batches 39 prepared in the same condition, (b) with different storage time (0-10 day), (c) with 40 different illumination time (0-60 min), (d) with different concentrations of NaCl (0-1 41 M), (e) with different concentrations of H_2O_2 (0-1000 μ M).

Fig. S7 (a) The color of N,P-MoO_x QDs solutions in different pH condition under the
irradiation of 365 nm UV lamp; (b)The color of N,P-MoO_x QDs solutions in different
pH condition: 1-pH 9.0; 2-pH 8.0; 3-pH 7.0; 4-pH 6.0; 5-pH 5.0; 6-pH 4.5; 7-pH 4.0;
8-pH 3.5; 9-pH 3.0; 10-pH 2.5; 11-pH 2.0.

42

48 Fig. S8 Fluorescence lifetimes of N,P-MoO_x QDs in different pH condition.

Fig. S9 Fluorescence intensity at 500 nm of the probe at pH 2.0 and 9.0 in the
presence of (a) metal ions: 100 mM Na⁺ and K⁺, 1 mM Ca²⁺ and Mn²⁺, 0.5 mM Mg²⁺,
urea and Ba²⁺, 0.25 mM Cr³⁺, 0.1 mM Co²⁺ and Fe³⁺, 0.05 mM Cd²⁺ and Fe²⁺, 0.01
mM Cu²⁺, 0.005 mM Pb²⁺, Ag⁺ and Hg²⁺, 100 mM NO₃⁻, 50 mM CO₃²⁻, 2 mM Cl⁻;
(b) biomolecules: 1 mM Arg, Gly, Thr, Leu, Ala, His, Cys, Glc, Tyr, Ser, Met, Asn,
Glu, Trp, Phe and Pro.

Fig.S10 Reversibility of N,P-MoO_x QDs in different pH values. (A) the fluorescence intensity of N,P-MoO_x QDs reversibly decreased and then increased by alternating the pH value of the system from pH 9.0 to 2.0 and then from 2.0 to 9.0. (B) the absorbance intensity of N,P-MoO_x QDs reversibly increased and then decreased by alternating the pH value of the system from pH 5.0 to 2.0 and then from 2.0 to 5.0.

Fig. S11 The UV absorption spectrum of MnO₄⁻ and excitation spectrum of N,P-MoO_x
QDs.

65

66 Fig. S12 The relative fluorescence intensities ([$(I-I_0)/I_0$]) at 510 nm of N,P-MoO_X

67 QDs-MnO₄⁻ after the addition of 31 μ M CP or 31 μ M other reducing substances,

68~ including GSH, $\rm H_2O_2,$ UA and AA, respectively.

70 Fig. S13 The viability of HEB cell after being incubated with N,P-MoO_x QDs in the

71 dilution ratio range from 2 to 100. The error bars represent standard deviations based

72 on three independent measurements.