Supporting Information for

Size-controlled synthesis of lanthanide-organic frameworks and their performance as fluorescence sensors

Kui Ren⁺, Xiao-Feng Guo⁺, Ying-jie Tang, Bo-Hui Huang, Hong Wang*

Key Laboratory of Analytical Chemistry for Biology and Medicine (Ministry of Education), College of Chemistry and Molecular Sciences, Wuhan University, Wuhan 430072, China¹

Corresponding author: Hong Wang

E-mail address: hongwang@whu.edu.cn

Tel.: +86-27-87218924; fax: +86-27-68754067

Table of Contents

Table of Contents
Figure S1. View of the space group of Tb-BTC-MOF along the c-axis, exhibiting 1D helical channels of about 6-7 Å
Figure S2. PXRD patterns of synthesized Tb-MOF-F and simulated from monoclinic (CCDC1499450) and tetragonal ((Inorg. Chem. 2010, 49, 10001-10006)) crystal data
Figure S3. TGA trace of Tb-MOFs with a heating rate of 5°C per minute measured in nitrogen
Figure S4. The IR spectra of H ₃ BTC ligand and Tb-MOFs7
Figure S5. SEM images for Tb-MOF-B with a width about 2.3 µm
Figure S6. SEM images for Tb-MOF-C with a width from 600 nm to 997 nm
Figure S7. SEM images for Tb-MOF-E with a width about 162 nm and height of 76 nm 10
Figure S8. Time-dependent fluorescent intensity changes of Bulk-Tb-MOFs and Nano-Tb-MOFs towards Folic acid (40µM)

Calculation of Limit of Detection.

For calculating the limit of detection, FA (0-30 μ M) was added to Tb-MOFs in ethanol-HEPES buffer (2:3, v/v) (20mM) (6:4, v/v) solution and fluorescent intensity was recorded and a good linear relationship between the fluorescence intensity and concentrations of FA was obtained with slope (K) of 4374.8×10⁶. Standard deviation (σ) was calculated from 10 replicate of Tb-MOFs samples. S is the slope of the calibration curve. Limit of detection was calculated according to the formula: LOD = $3\sigma/K$.

Figure S1. View of the space group of Tb-BTC-MOF along the c-axis, exhibiting 1D helical channels of about 6-7 Å .

Figure S2. PXRD patterns of synthesized Tb-MOF-F and simulated from monoclinic (CCDC1499450) and tetragonal ((Inorg. Chem. 2010, 49, 10001-10006)) crystal data.

Figure S3. TGA trace of Tb-MOFs with a heating rate of 5°C per minute measured in nitrogen.

Figure S4. The IR spectra of H₃BTC ligand and Tb-MOFs.

Figure S5. SEM images for Tb-MOF-B with a width about 2.3 $\mu m.$

Figure S6. SEM images for Tb-MOF-C with a width from 600 nm to 997 nm

Figure S7. SEM images for Tb-MOF-E with a width about 162 nm and height of 76 nm.

Figure S8. Time-dependent fluorescent intensity changes of Bulk-Tb-MOFs and Nano-Tb-MOFs towards Folic acid (40μ M).