Serratia marcescens-derived fluorescent carbon dots as the platform toward multimode bioimaging and detection of *p*-nitrophenol

Yafang Ding^{a#}, Wenzhang Tan^{a#}, Xiaodan Zheng^a, Xiuling Ji^a, Pengfei Song^b, Limei Bao^c, Chunting Zhang^a, Junjie Shang^a, Kunhao Qin^{a*}, Yunlin Wei^{a*}

a. Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China

b. R&D Center, China Tobacco Yunnan Industrial Co., Ltd, Kunming 650091, China

c. Faculty of Science, Kunming University of Science and Technology, Kunming 650500, China

#. These authors have contributed equally to this work.

*. Corresponding author: qinteddy@163.com; weiyunlin18@163.com.

Fig. S1 (A): Normalized fluorescence intensity of CDs-KMR3 in different NaCl concentrations ranging from 0 to 2 M. (B): The fluorescence intensity of CDs-KMR3 varying with the sample pH value from 2 to 10. (C): Normalized fluorescence intensity of CDs-KMR3 under UV (365 nm) irradiation for 3 h. (D): Effect of reaction time on

the detection of *p*-NP with CDs-KMR3.

Fig. S2 Hela cell viability from MTT assays with different CDs-KMR3 concentration after 24 h incubation.

Fig. S3 CLSM images of Hela cells incubated with CDs-KMR3 under different excitation wavelengths.