Supporting Information

Synergetic enhancement of electrochemical H₂O₂ detection in

nitrogen-doped carbon encapsulated FeCo alloy architecture

Chunlin Chang, Qian Chen and Guangyin Fan *

College of Chemistry and Materials Science, Sichuan Normal University, Chengdu

610068, China.

* Corresponding author

Email: fanguangyin@sicnu.edu.cn (G. Fan).

Materials and reagents

Iron(III) nitrate nonahydrate (Fe(NO₃)₃·9H₂O), cobalt(II) acetate tetrahydrate (Co(AC)₂·4H₂O), dopamine (DA), urea (Urea), glucose (Glu), sucrose (Sur), frucose (Fru),ascorbic acid (AA), potassium chloride (KCl) and sodium chloride (NaCl) were purchased from Aladdin Industrial Inc. Ethylene diamine tetraacetic acid tetrasodium (EDTA·4Na), K₂HPO₄·3H₂O, KH₂PO₄·3H₂O and hydrogen peroxide (H₂O₂) were purchased from Chengdu Kelong reagent Co., Ltd. Milk and orange juice purchased from Walmart. The serum samples were obtained from Sichuan University. The phosphate buffer solution (0.1 M, pH = 7.4, PBS) was used as a supporting electrolyte. A stock solution of H₂O₂ (10.0 mM) was prepared daily by diluting 35 % (v/v) H₂O₂ into 10 mL with distilled water. All of these reagents were analytical grade without further treatment and deionized water (Mill Q, 18.2 MΩ) was used.

Fig. S1 XRD pattern of the carbonized product of EDTA-4Na.

Fig. S2 SEM image (a) and XRD pattern (b) of $Fe_{0.06}Co_{0.04}/NPC$.

Fig. S3 N_2 adsorption–desorption isotherms of NPC and Fe_{0.06}Co_{0.04}@NPC-950.

Fig. S4 CVs of $Fe_{0.02}Co_{0.08}$ @NPC-950, $Fe_{0.04}Co_{0.06}$ @NPC-950, $Fe_{0.06}Co_{0.04}$ @NPC-950 and $Fe_{0.08}Co_{0.02}$ @NPC-950 in 0.1 M PBS at a scan rate of 50 mV s⁻¹ in 7 mM H₂O₂ with potential range of 0 to -0.7 V.

Fig. S5 CVs of NPC in PBS containing 0 and 7 mM H_2O_2 .

Fig. S6 CVs of $Fe_{0.06}Co_{0.04}$ @NPC-850, $Fe_{0.06}Co_{0.04}$ @NPC-950 and $Fe_{0.06}Co_{0.04}$ @NPC-1050 in 0.1 M PBS at a scan rate of 50 mV s⁻¹ in 0 mM and 7 mM H₂O₂ with potential range of 0 to -0.7 V.

Fig. S7 Current intensity change with the pH values changed from 5.8 to 8.0.

Fig. S8 EIS of $Fe_{0.06}Co_{0.04}$ @NPC-950, $Fe_{0.10}$ @NPC-950, $Co_{0.10}$ @NPC-950 and NPC in 0.1 M PBS containing 1.0 mM H₂O₂.

Samples	Concentration (Fe/mg L ⁻¹)	Concentration (Co/mg L ⁻¹)	Volume (L)	Mass total (mg)	Fe (wt. %)	Co (wt. %)
Fe _{0.06} Co _{0.04} /NPC	2.589	1.464	10	4	0.98	0.47
Fe _{0.06} Co _{0.04} @NPC	1.533	0.585	10	4	0.38	0.13

 Table S1. The iron and cobalt content of as-prepared catalysts detected by ICP-OES.

Catalysts/Electrodes	Sensitivity	Linear range	Detection limit	Referrence
	(µA mM ⁻¹ cm ⁻²)	(mM)	(µM)	
AuPd-PDA	83.1	0.001-11.22	0.26	1
CoFe/NGR-2	435.7	0.001-8.564	0.28	2
Ni ₂ P NA/TM	690.7	0.001-20	0.2	3
Co ₃ N NW/TM	139.9	0.002-28	1	4
Fe ₃ O ₄ /graphene	274.15	0.008-0.3344	0.078	5
GN/FeOOH	265.7	0.00025-1.2	0.08	6
ZIF-67/rGO/GCE	51.86	0.005-2.15	1.5	7
	19.44	2.15-11.15		
hollow CuO/PANI fibers	-	0.005-9.255	0.11	8
Fe-NGCs	184.4	0.001-5	0.53z.star	9
MXene/NiCo ₂ S ₄	267	-	0.193	10
Co@MOF-808	382.27	0.01-0.45	1.3	11
$3D \ Co_{0.6} Ni_{0.4} Se_2 \ NWs$	89;	0.0005-6;	0.14	12
	31.8	6-15	0.16	
Vit.B ₁₂ -NGr	4.08	0.02 -0.168	-	13
Gox/CoS-MWCNTs	15	0.008 - 1.5	5	14
iCo ₂ O ₄ /CoNiO ₂ @pRGO ₆₀₀	1.295;	0.005–3;	0.41	15
	0.936	3-12	0.41	15
Fe _{0.06} Co _{0.04} @NPC-950	794	0.004-8	0.13	This work

Table S2. Comparison of the sensor modified by $Fe_{0.06}Co_{0.04}$ @NPC-950 with reported

Samples	Added (µM)	Found (µM)	Recovery (%)	R.S.D (%) ^a
Milk	10	8.96	89.6	1.12
Orange juice	10	9.72	97.2	1.07
Serum	10	10.28	102.8	0.78

Table S3. Summarized results for the detection of H_2O_2 in real samples by using $Fe_{0.06}Co_{0.04}$ @NPC-950.

^a Relative standard deviation estimated from three separated experiments

References:

- 1. G. He, F. Gao, W. Li, P. Li, X. Zhang, H. Yin, B. Yang, Y. Liu and S. Zhang, *Anal. Methods*, 2019, **11**, 1651-1656.
- 2. M. Hassan, Y. Jiang, X. Bo and M. Zhou, *Talanta*, 2018, **188**, 339-348.
- 3. X. Xiong, C. You, X. Cao, L. Pang, R. Kong and X. Sun, *Electrochim. Acta*, 2017, **253**, 517-521.
- 4. F. Xie, X. Cao, F. Qu, A. M. Asiri and X. Sun, *Sens. Actuators, B*, 2018, **255**, 1254-1261.
- 5. Y. Zhao, D. Huo, J. Bao, M. Yang, M. Chen, J. Hou, H. Fa and C. Hou, *Sens. Actuators, B*, 2017, **244**, 1037-1044.
- 6. X. Chen, J. Gao, G. Zhao and C. Wu, *Sens. Actuators, B*, 2020, **313**, 128038.
- 7. Y. Dong and J. Zheng, *Sens. Actuators, B*, 2020, **311**, 127918.
- 8. T. Liu, Y. Guo, Z. Zhang, Z. Miao, X. Zhang and Z. Su, Sens. Actuators, B, 2019, **286**, 370-376.
- 9. Z. M. Sheng, Z. Z. Gan, H. Huang, R. L. Niu, Z. W. Han and R. P. Jia, *Sens. Actuators, B*, 2020, **305**, 127550.
- 10. Y. Li, P. Kamdem and X. J. Jin, *Dalton Trans*, 2020, **49**, 7807-7819.
- 11. Y.-S. Chang, J.-H. Li, Y.-C. Chen, W. H. Ho, Y.-D. Song and C.-W. Kung, *Electrochim. Acta*, 2020, **347**, 136276.
- 12. Z. Rahmati, M. Roushani and H. Hosseini, *Sens. Actuators, B*, 2020, **324**, 128730.
- 13. S. A. Bhat, N. Rashid, M. A. Rather, S. A. Pandit, P. P. Ingole and M. A. Bhat, *Electrochim. Acta*, 2020, **337**, 135730.
- 14. J. Li, Y. Liu, X. Tang, L. Xu, L. Min, Y. Xue, X. Hu and Z. Yang, *Microchim Acta*, 2020, **187**, 80.
- 15. M. Wang, C. Wang, Y. Liu, B. Hu, L. He, Y. Ma, Z. Zhang, B. Cui and M. Du, *Microchim Acta*, 2020, **187**, 436.