Supporting Information

A metal-free coumarin-based fluorescent probe for turn on

monitoring carbon monoxide in aqueous solution and living cells

Shiqing Zhang, ^a Xinyue Mu, ^a Jinbiao Zhu, ^a Liqiang Yan, ^{*a}

College of Chemistry and Bioengineering, Guilin University of Technology, Guilin,

Guangxi 541006, P.R. China

E-mail: liqiangyan@glut.edu.cn

Contents

Table S1. Comparison of the properties of fluorescent probes for CO1
Figure S1. ¹ H NMR of probe NCCA in DMSO-d ₆
Figure S2. ¹³ C NMR of probe NCCA in DMSO-d ₆
Figure S3. HRMS of probe NCCA in CH ₃ CN4
Figure S4. Changes of UV-vis spectra of probe NCCA with CORM-3 over time. Inset:
Color change
Figure S5. Plot of normalized fluorescence intensity of probe (10 μ M) in the presence
of CO (800 μ M) with time (λ ex = 100 nm, λ em = 450 nm)
Figure S6. Changes of fluorescence intensity of probe NCCA (10 $\mu M)$ with and
without CORM-3 (100 $\mu M)$ in mixed solution with different water contents5
Figure S7. ¹ H NMR of probe NCCA with CORM-3 in DMSO-d ₆ 5
Figure S8. HRMS of probe NCCA with CORM-3 in DMSO-d ₆ 6
Figure S9. Optimized molecular structures and corresponding orbital electron
distribution of probe with and without CORM-3
Figure S10. Cell viability of HepG2 cells after 24 hours of incubation with different
concentrations of probe NCCA by MTT assay7

Probe	Pd-free	solvent	LOD	Linear range	Ref.
$R \rightarrow O \rightarrow PdCl_{2}$ $R \rightarrow O \rightarrow R$ $R = H \text{ or } Cl$	No	PBS with 0.5% DMSO, v/v	46 nM, 29 nM	0 – 50 μM	16
S- N N O O O + PdCl ₂	No	PBS with 50% DMSO, v/v	78nm	$0.4-70\;\mu M$	17
	No	PBS with 5% DMSO, v/v	30.8 nM	1 – 5 μM	18
NC CN + PdCl ₂	No	PBS with 50% DMSO, v/v	57 nM	0 – 30 µM	19
	No	PBS	0.17 μΜ	0 – 60 μM	20
+N-++PdCl ₂	No	PBS with 0.5% DMSO, v/v	3.2 nM	0 – 8 µM	21
0 0 0 0 0 $+ PdCl_2$	No	PBS	62 nM	$0-25\ \mu M$	22
+ PdCl ₂	No	HEPES with 20% DMSO	3.8 µM	0 – 30 μM	23
NC CN O CN O CH O CH CH CH CH CH CH CH CH CH CH CH CH CH C	No	PBS	0.33 μ Μ	1 – 100 μM	24
	No	DPBS	Not mentioned	Not mentioned	25
O V V V V V V V V V V V V V V V V V V V	No	PBS with 5% DMSO	50 nM	0 – 1.5 μM	26

Table S1. Comparison of the properties of fluorescent probes for CO.

Probe	Pd-free	solvent	LOD	Linear range	Ref.
-Ne H N N N N N N N N N N N N N N N N N N	No	DMSO/DPBS = 1 : 19, v/v	0.23 μM	5 – 25 µM	27
HN HOOC Pd Clown	No	HEPES with 50% EtOH	0.06 μΜ	0 – 6 µM	28
O P O H O O O M O M	No	Methanol	Not mentioned	Not mentioned	29
	Yes	HEPES with 1% DMSO	0.60 µM	1–10 μM	30
	Yes	PBS with 0.5% DMSO, v/v	16 nM	0-14 µM	31
	Yes	HEPES with 30% DMSO, v/v	6.1nM	$0-7\;\mu M$	32
	Yes	PBS	10 nM	0.1 – 1.0 μM	33
O ₂ N COOH	Yes	PBS with 1% DMSO, v/v	12 nM	$0-20\ \mu M$	This work

Continued table S1. Comparison of the properties of fluorescent probes for CO.

Figure S1. ¹H NMR of probe NCCA in DMSO-d₆.

Figure S2. ¹³C NMR of probe NCCA in DMSO-d₆.

Figure S3. HRMS of probe NCCA in CH₃CN.

Figure S4. Changes of UV-vis spectra of probe NCCA with CORM-3 over time. Inset: Color change.

Figure S5. Plot of normalized fluorescence intensity of probe (10 μ M) in the presence of CO (800 μ M) with time (λ ex = 100 nm, λ em = 450 nm)

Figure S6. Changes of fluorescence intensity of probe NCCA (10 μ M) with and without CORM-3 (100 μ M) in mixed solution with different water contents.

Figure S7.¹H NMR of probe NCCA with CORM-3 in DMSO-d₆.

Figure S8. HRMS of probe NCCA with CORM-3 in DMSO-d₆.

Figure S9. Optimized molecular structures and corresponding orbital electron distribution of probe with and without CORM-3.

Figure S10. Cell viability of HepG2 cells after 24 hours of incubation with different concentrations of probe NCCA (0, 5, 10, 15, 20, 25, 30, 35 and 40 μ M, respectively) by MTT assay.