Supplementary Materials for:

Orange emissive carbon nanodots for fluorescent and colormetric

bimodal discrimination of Cu²⁺ and pH

Lihong Shi^{a,*}, Yuejing Bao^a, Yan Zhang^a, Caihong Zhang^a, Guomei Zhang^a, Chuan Dong^a, Shaomin Shuang^{a,*}

^aCollege of Chemistry and Chemical Engineering, Shanxi University, Taiyuan 030006, PR China

*Corresponding author. E-mail address: shilihong@sxu.edu.cn, smshuang@sxu.edu.cn

Materials

The citric acid, 5-aminosalicylic acid, Tris, alanine, phenylalanine, methionine, glutamicacid, arginnine, lysine, tyrosine, leucine, proline, threonine, asparagine, valine, isoleucine, histidine were obtained from Shanghai Aladdin Reagent Co, Ltd. (Shanghai, China). CuCl₂, CoCl₂, BiCl₃, CaCl₂, CdCl₂, HgCl₂, KCl, AlCl₃, BaCl₂, MgCl₂, MnCl₂, NaCl, PbCl₂ and ZnCl₂ were purchased from Beijing Chemical Corp (Beijing, China). Distilled deionized (DDI) water was obtained from a Millipore Milli-Q-RO4 water purification system with a resistivity of 18.2 MΩ cm⁻¹ (Bedford, MA, USA). Dialysis membranes with a MWCO of 500–1000 Da were obtained from Beijing Solarbio Science & Technology Co., Ltd (Beijing, China).

Apparatus

The transmission electron microscopy (TEM) images were obtained on a JEOL JEM-2100 transmission electron microscope (Tokyo, Japan) at an accelerating voltage of 200 kV. Atomic force microscope (AFM) images were obtained using an AFM Bruker MultiMode 8 in the contact mode. The UV-vis absorption spectrum of O-CDs was measured by Puxi TU-1901 UV–vis absorption spectrophotometer. Fluorescent properties were measured on a Hitachi F-4500 spectrophotometer (Tokyo, Japan). The X-ray photoelectron spectroscopy (XPS) was done on an AXISULTRA DLD X-ray photoelectron spectrometer (Kratos, Tokyo, Japan) with Al Kα radiation operating at 1486.6 eV. Spectra were processed by the Case XPS v.2.3.12 software using a peak-fitting routine with symmetrical Gaussian–Lorentzian functions. Fourier Transform

infrared (FTIR) spectrum was recorded on Thermo Scientific Nicolet iS50 FTIR Spectrometer. Nanosecond fluorescence lifetime experiments were performed using a FLS 920 time-correlated single-photon counting (TCSPC) system under right-angle sample geometry. All fluorescence images were collected with Zeiss LSM880 confocal laser-scanning microscope.

Fluorescence QY measurements

The relative fluorescence QY (Φ) of the O-CDs was calculated using the equation: $\Phi_x = \Phi_{std}I_x A_{std}\eta_x^2/(I_{std}A_x\eta_{std}^2)$. The optical densities were measured using a Puxi TU-1901 UV–vis absorption spectrophotometer. In the equation, I_x and I_{std} are the fluorescence intensities of the O-CDs and the standard, respectively. A_x and A_{std} denote the optical densities (OD) of the O-CDs and the standard, respectively. Rhodamin 6G in ethanol was chosen as a standard with a QY of 0.94 at 488 nm. η_x and η_{std} denote the refractive indices of the O-CDs and the standard, respectively. The absorbances of all the samples in a 1.0 cm cuvette were kept under 0.1 at the excitation wavelength to minimize re-absorption effects.

MTT assay

For the cell cytotoxicity text, HeLa cells were first plated on a Costar 96-well tissue-culture cluster and cultured at 37°C with 5% CO₂ in air for 3 h to adhere cells onto the surface. The well without cells and treatment with O-CDs was taken as a zero set. The medium was then changed with 100 μ L of fresh DMEM supplemented with 10% FBS containing O-CDs, and the cells were allowed to grow for another 24 h. At least five parallel samples were performed in each group. Cells without treatment with N-CDs were taken as a control. After adding 20 μ L of 5.0 mg/mL MTT reagent into individual well, the cells were further incubated for 4 h, followed by removing the culture medium with MTT, and then 150 μ L of DMSO was added. The resulting mixture was shaken for ca. 10 min at room temperature. The OD of the mixture was measured at 490 nm with a SunRisemicroplate reader (Tecan Austria GmbH, Grödig, Austria).The cell viability was estimated using the equation of Cell Viability (%) = (OD_{Treated}/OD_{Control}) × 100%, where OD_{Control} and OD_{Treated} were obtained in the absence and presence of O-CDs, respectively.

Cell imaging

In a 5% CO₂ incubator, HeLa cells in the exponential phase were seeded into 15 mm glass culture dishes at an initial density of 1×106 cells/mL with DMEM containing 10% FBS and incubated at 37°C. After incubation, the medium was discarded and Hela cells were treated with mixture of O-CDs and DMEM for 2 h. The extracellular O-CDs were removed by rinsing twice with Tris-Hcl buffer solutions (pH=7.2), and then cells were incubated with 1 mL Tris-Hcl buffer (0.01 M) containing a range of concentration of Cu²⁺. Immediately, fluorescence images were captured on laser scanning confocal microscope (LSCM).

Fig. S1 FTIR spectrum of O-CDs.

Fig. S2 Effect of NaCl concentration on fluorescence intensity of O-CDs.

Fig. S3 Selectivity of O-CDs for Cu^{2+} against amino acids and anion under pH 7.2 conditions at 550 nm excitation.

Fig. S4 TEM images of O-CDs (A) and O-CDs/Cu²⁺ (B).

Fig. S5 The schematic diagram of the quenching process of O-CDs coordinating with Cu^{2+} .

Starting material of synthesis	linear scope	Detection limit	Ref.
citric acid and ure	1–10 µM	40 nM	[1]
radish	1–5 µM	160 nM	[2]
m-phenylenediamine and sulfamide	2–60 µM	290 nM	[3]
PEI and l-cysteine	0–200 µM	38 nM	[4]
1-carboxyethyl-3-methyl imidazole	0–40 µM	125 nM	[5]
chloride gel			
lemon juice and l-arginine	0–300 µM	47 nM	[6]
citric acid and 5-aminosalicylic acid.	0–300 µM	28 nM	This work

Table S1 Comparison of different fluorescent CDs based probes for Cu²⁺ detection.

Fig. S6 (A) RGB values versus the Cu^{2+} concentration. (B) B/B_0 versus the Cu^{2+} concentration.

Fig. S7 TEM images of O-CDs under different pH: (A) 7.2; (B) 8.2; (C) 9.2.

Fig. S8 PL quenching mechanism of O-CDs under alkaline media.

Fig. S9 Cytotoxic effect of obtained O-CDs on HeLa cells.

Fig. S10 Colocalization of O-CDs in HeLa cells. (A) O-CDs and MitoTracker Green colocalization imaging. (B) O-CDs and Lyso Tracker Green colocalization imaging.

References

1 C. D. Chen, M. Xu, W. W. Wu, and S. C. Li, J. Alloys Compd, 2017, 701, 75-81.

2 J. Praneerad, N. Thongsai, P. Supchocksoonthorn, S. Kladsomboon, and P. Paoprasert, *Spectrochim. Acta A Mol. Biomol. Spectrosc*, 2018, **211**, 59–70.

3 Y. Y. Dai, Z. C. Liu, Y. F. Bai, Z. Z. Chen, J. Qin, and F. Feng, *RSC Adv.*, 2018, **8**, 42246–42252.

4 S. S. Wei, T. H. Li, X. Y. Zhang, H. Y. Zhang, C. H. Jiang, and G. Y. Sun, *Anal. Methods*, 2020, **12**, 5110–5119.

5 B. G. Wang, H. Tan, T. L. Zhang, W. M. Duan, and Y. Q. Zhu, *Analyst*, 2019, **144**, 3013–3022.