Supplementary Data

Ferrofluid-based dispersive liquid-liquid microextraction using a deep eutectic solvent as a support; Application in analysis of polycyclic aromatic hydrocarbons in grilled meats

Abolghasem Jouyban ${ }^{1}$, Mir Ali Farajzadeh ${ }^{2,3}$, Mahboob Nemati ${ }^{4}$, Ali Akbar Alizadeh Nabil ${ }^{5}$, Mohammad Reza Afshar Mogaddam ${ }^{5 *}$
${ }^{1}$ Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
${ }^{2}$ Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran
${ }^{3}$ Engineering Faculty, Near East University, 99138 Nicosia, North Cyprus, Mersin 10, Turkey
${ }^{4}$ Drug Applied Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
${ }^{5}$ Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran

*Corresponding author: M. R. Afshar Mogaddam
Tel.: +98 4131773323
Fax: +98 4131773333
E-mail address: mr.afsharmogaddam@yahoo.com

Figure S1 shows the FT-IR spectra of $\mathrm{Fe}_{3} \mathrm{O}_{4}$ and $\mathrm{Fe}_{3} \mathrm{O}_{4} @$ TEOS. The strong peak around $585 \mathrm{~cm}^{-1}$ is attributed to $\mathrm{Fe}-\mathrm{O}$ bond in $\mathrm{Fe}_{3} \mathrm{O}_{4}$. In comparison to Fig. S1a, Figure S1b has new peaks at 1052 (stretching vibration of $\mathrm{Si-O}$ bond in SiO_{2}) and 1629 and $3482 \mathrm{~cm}^{-1}$ (related to $\mathrm{O}-\mathrm{H}$).

Fig. S1. FT-IR spectra of (a) $\mathrm{Fe}_{3} \mathrm{O}_{4}$, and (b) $\mathrm{Fe}_{3} \mathrm{O}_{4} @$ TEOS.

Fig. S2. TGA thermogram (a) and FT-IR spectrum (b) of the prepared DES.

Fig. S3 SEM image of (a) the Fe3O4@TEOS magnetic nanoparticles and (b) the prepared ferrofluid.

Fig. S4. Optimization of NaOH solution concentration.
Extraction conditions: sample weight, 10 g spiked with a concentration of $10 \mathrm{ng} \mathrm{g}^{-1}$ of each PAH ; acetonitrile volume, 2.5 mL ; flow rate, $1.5 \mathrm{~mL} \mathrm{~min}^{-1}$; solid sodium sulfate filled in extraction barrel, 2 g ; extractant in DLLME (volume), $\mathrm{Fe}_{3} \mathrm{O}_{4} @$ TEOS@PChCl:menthol:decanoic acid ($100 \mu \mathrm{~L}$); aqueous phase in DLLME, 5 mL deionized water; sonication time, 3 min and back-extraction solvent: $10 \mu \mathrm{~L} n$-hexane. The error bars indicate standard deviations of three repeated determinations.

Fig. S5. Optimization of sonication time
Extraction conditions: are the same as those used in Fig. S4, except NaCl concentration which was 2 M .

Fig. S6. Optimization of NaCl concentration
Extraction conditions: are the same as those used in Fig. 5S, except 5.0 min was selected for sonication time.

Table S1. Results of assays to check the sample matrices effect for PAHs. Analytes contents of the samples were subtracted.

Analyte	Mean relative recovery \pm standard deviation (n=3)									
	Sample									
	1	2	3	4	5	1	2	3	4	5
	All samples were spiked with each analyte at a concentration of $400 \mathrm{ng} \mathrm{kg}{ }^{-1}$.									
Acenaphthene		99 ± 4	93 ± 4	93 ± 6	92 ± 7	92 ± 7	92 ± 7	93 ± 5	92 ± 7	95 ± 4
Acenaphthylene	96 ± 5	90 ± 4	91 ± 4	95 ± 5	93 ± 5	95 ± 5	90 ± 4	93 ± 5	98 ± 5	95 ± 7
Anthracene	92 ± 7	93 ± 5	95 ± 7	95 ± 5	90 ± 4	93 ± 6	92 ± 5	93 ± 6	90 ± 6	96 ± 3
Benzo[a]anthracene	95 ± 5	95 ± 5	94 ± 4	96 ± 3	93 ± 6	94 ± 4	93 ± 6	95 ± 5	93 ± 6	94 ± 7
Benzo[b]fluoranthene	90 ± 6	90 ± 4	92 ± 6	93 ± 6	97 ± 5	92 ± 3	92 ± 5	98 ± 4	93 ± 5	92 ± 5
Benzo[k]fluoranthene	94 ± 5	95 ± 5	93 ± 4	98 ± 4	93 ± 6	92 ± 5	98 ± 4	95 ± 7	93 ± 6	92 ± 5
Benzo[ghi]perylene	90 ± 4	95 ± 2	93 ± 6	91 ± 7	95 ± 7	92 ± 5	90 ± 7	92 ± 5	97 ± 5	91 ± 5
Benzo[a]pyrene	95 ± 5	94 ± 4	93 ± 6	97 ± 5	93 ± 6	94 ± 4	98 ± 4	92 ± 5	93 ± 6	89 ± 5
Chrysene	92 ± 7	93 ± 4	98 ± 4	93 ± 6	94 ± 5	94 ± 4	92 ± 5	90 ± 7	90 ± 6	92 ± 5
Dibenzo[a,h]anthracene	95 ± 7	91 ± 4	97 ± 5	93 ± 7	96 ± 6	93 ± 3	92 ± 5	92 ± 4	97 ± 5	93 ± 3
Fluoranthene	95 ± 7	94 ± 5	94 ± 4	93 ± 6	93 ± 6	95 ± 7	92 ± 6	93 ± 7	93 ± 6	94 ± 4
Fluorene	91 ± 6	95 ± 5	93 ± 6	92 ± 5	92 ± 6	96 ± 5	94 ± 5	94 ± 3	96 ± 2	90 ± 3
Indeno[1,2,3-cd] pyrene	92 ± 6	92 ± 6	97 ± 5	94 ± 5	95 ± 3	95 ± 5	95 ± 3	90 ± 5	96 ± 4	94 ± 5
Naphthalene	98 ± 6	93 ± 5	95 ± 3	96 ± 6	95 ± 3	94 ± 5	90 ± 2	95 ± 3	89 ± 5	95 ± 3
Phenanthrene	94 ± 4	90 ± 4	92 ± 6	95 ± 3	92 ± 5	90 ± 5	96 ± 3	96 ± 5	93 ± 4	96 ± 3
Pyrene	96 ± 4	92 ± 4	94 ± 5	94 ± 7	91 ± 5	92 ± 5	90 ± 5	94 ± 2	92 ± 5	94 ± 7

All samples were spiked with each analyte at a concentration of $800 \mathrm{ng} \mathrm{kg}^{-1}$.

Acenaphthene	96 ± 2	92 ± 4	94 ± 6	92 ± 5	96 ± 5	90 ± 4	95 ± 3	94 ± 6	94 ± 2	98 ± 4
Acenaphthylene	90 ± 6	92 ± 7	95 ± 3	97 ± 5	99 ± 5	99 ± 5	97 ± 4	95 ± 5	92 ± 4	91 ± 5
Anthracene	94 ± 2	91 ± 5	92 ± 4	92 ± 6	95 ± 3	99 ± 5	92 ± 2	90 ± 3	93 ± 3	97 ± 5
Benzo[a]anthracene	94 ± 5	90 ± 8	97 ± 5	96 ± 2	99 ± 4	97 ± 3	94 ± 4	96 ± 5	94 ± 5	90 ± 7
Benzo[b]fluoranthene	94 ± 5	99 ± 5	95 ± 6	98 ± 2	97 ± 6	97 ± 5	99 ± 6	92 ± 5	96 ± 5	95 ± 7
Benzo[k]fluoranthene	98 ± 3	91 ± 2	93 ± 5	93 ± 6	95 ± 6	95 ± 5	92 ± 7	90 ± 4	95 ± 4	97 ± 4
Benzo[ghi]perylene	92 ± 5	98 ± 4	96 ± 6	92 ± 6	94 ± 5	91 ± 4	96 ± 5	90 ± 4	94 ± 5	90 ± 3
Benzo[a]pyrene	94 ± 5	99 ± 5	95 ± 2	93 ± 6	91 ± 3	92 ± 5	91 ± 6	92 ± 3	90 ± 6	90 ± 7
Chrysene	94 ± 4	98 ± 2	92 ± 6	96 ± 4	97 ± 5	92 ± 4	93 ± 5	89 ± 6	92 ± 7	95 ± 2
Dibenzo[a,h]anthracene	96 ± 3	94 ± 3	99 ± 7	95 ± 6	93 ± 6	95 ± 3	94 ± 7	95 ± 4	94 ± 6	95 ± 7
Fluoranthene	92 ± 6	92 ± 5	95 ± 4	92 ± 5	98 ± 4	94 ± 8	95 ± 5	90 ± 4	96 ± 4	93 ± 6
Fluorene	96 ± 7	92 ± 2	90 ± 7	94 ± 4	98 ± 5	95 ± 7	90 ± 5	98 ± 4	92 ± 4	93 ± 6
Indeno[1,2,3-cd] pyrene	92 ± 4	92 ± 3	92 ± 5	94 ± 3	96 ± 4	96 ± 2	98 ± 5	97 ± 2	95 ± 5	97 ± 5
Naphthalene	95 ± 4	94 ± 4	92 ± 5	94 ± 4	94 ± 7	94 ± 4	97 ± 4	92 ± 3	94 ± 6	92 ± 4
Phenanthrene	95 ± 6	94 ± 5	92 ± 6	92 ± 6	90 ± 5	95 ± 4	95 ± 7	92 ± 4	98 ± 2	94 ± 6
Pyrene	92 ± 6	95 ± 3	94 ± 5	95 ± 6	93 ± 5	92 ± 5	94 ± 7	90 ± 4	92 ± 5	90 ± 7

