Supplementary Information

Simultaneous Aptasensor Assay of Ochratoxin A and Adenosine

triphosphate in Beer based on Fe₃O₄ and SiO₂ Nanoparticle as

Carriers

Xiluan Yan^a, Mengmeng Jiang^a, Yuting Jian^a, Jing Luo^a, Xinxin Xue^a, Xin Chen^a, Xiangjuan

Zheng^c, Fanrong Ai^{b*}

^aSchool of Resources Envirenmental & Chemical Engineering, Nanchang University,

Nanchang 330031, PR China

^bSchool of Machanical & Electrical Engineering, Nanchang University, Nanchang 330031,

PR China

° School of Chemistry, Nanchang University, Nanchang 330031, PR China

* Corresponding author

E-mail: afr3755875@126.com

Fig. S1. XRD pattern of the Fe_3O_4 NPs (a) and SiO_2 NPs (b)

Fig. S2. (A) Magnetization curves of the Fe₃O₄ NPs ;(B) Magnetic responsiveness of Fe₃O₄ NPs

Fig. S3. CL intensity versus the amounts of Fe_3O_4 NPs (A), SiO_2 NPs (B), capture 2 DNA 1 (C), capture DNA 2 (D), OTA aptamer (E) and ATP aptamer (F). 3 Experimental conditions: (A) 20 pmol of capture DNA 1;20 pmoL of OTA aptamer; 4 5 OTA concentration is 1.25×10^{-7} M.(B) 20 pmol of capture DNA 2 ;20 pmoL of ATP 6 aptamer; ATP concentration is 1.00×10^{-7} M.(C) 250 µg Fe₃O₄ NPs; 20 pmol of OTA 7 aptamer; OTA concentration is 1.25×10^{-7} M. (D) 270 µg SiO₂ NPs ; 20 pmol of ATP aptamer; ATP concentration is 1.00×10^{-7} M.(E) 250 µg Fe₃O₄ NPs and 40 pmol of 8 capture DNA 1; OTA concentration is 1.25×10^{-7} M. (F) 270 µg SiO₂ NPs and 50 9 pmol of capture DNA 2; ATP concentration is 1.00×10^{-7} M. Every data point was 10 the mean of 3 measurements. 11

Analytical target	Detection method	Label	LOD	Linear range	Reference
ATP	fluorometric method	biotin- labeled	140 nM	0.5~17.5 mM	1
ATP	photoelectrochemical immunoassay method	quantum dot - labeled	3.7 µM	10~350 μM	2
ATP	fluorescence method	Cy5-labeled	0.2 µM		3
OTA	fluorescent method	fluorescence of carboxyfluores cein- labeled	20 nM	0.02~0.4 μM	4
OTA	fluoresence method	label-free	16.5 nM	20~500 nM	5
OTA Aflatoxin B1	immunchromatographic method		6.19 nM 1.6 nM		6
OTA Zearalenone	immunochromatographic method		0.79 nM 1.82 nM	1.32~30 nM 3.33~124 nM	7
ATP Thrombin	fluoresence method	label-free	1.3 nM 0.007 nM	10~100 nM 0.1~100 nM	8
OTA Aflatoxin B1	SPR method		3.15 nM 1.89 nM	1.89~11 nM	9
OTA ATP	chemiluminiscence method	label-free	9.02 nM 9.31 nM	12.5~2500 nM 10~2000 nM	This paper

Table S1. Comparison of different detection methods

1 References

- Y. S. Guo, J. Liu, G. X. Yang, X. F. Sun, H. Y. Chen and J. J. Xu, *Chem Commun*, 2015, 51, 862-865.
- J. N. Tian, Y. Wang, S. Chen, Y. X. Jiang, Y. C. Zhao and S. L. Zhao, *Microchim Acta*, 2013,
 180, 203-209.
- 6 3. A. R. Ruslinda, Y. Ishiyama, X. Wang, T. Kobayashi and H. Kawarada, *J Electrochem Soc*,
 7 2012, **159**, J182-J187.
- 8 4. Y. Wei, J. Zhang, X. Wang and Y. X. Duan, *Biosens Bioelectron*, 2015, 65, 16-22.
- 9 5. L. Lv, D. H. Li, R. J. Liu, C. B. Cui and Z. J. Guo, Sensor Actuat B-Chem, 2017, 246, 647-652.
- 10 6. W. B. Shim, G. Kim, H. J. Ryu, M. Nam and D. H. Chung, *Food Sci Biotechnol*, 2009, 18, 641-648.
- X. Zhang, K. He, Y. Fang, T. Cao, N. Paudyal, X. F. Zhang, H. H. Song, X. L. Li and W. H.
 Fang, *J Zhejiang Univ-Sc B*, 2018, **19**, 871-883.
- K. Y. Wang, J. Liao, X. Y. Yang, M. Zhao, M. Chen, W. R. Yao, W. H. Tan and X. P. Lan,
 Biosens Bioelectron, 2015, 63, 172-177.
- 16 9. T. Wei, P. P. Ren, L. L. Huang, Z. C. Ouyang, Z. Y. Wang, X. F. Kong, T. J. Li, Y. L. Yin, Y.
- 17 N. Wu and Q. H. He, *Food Chem*, 2019, **300**.