| Dopamine modified on magnetic graphene oxide as a recoverable absorbent for preconcentration of metal ions by an | | | | | | |--|--|--|--|--|--| | effervescent-assisted dispersive micro solid-phase extraction procedure | | | | | | | | | | | | | | Basira Karbalaie, Maryam Rajabi and Bahareh Fahimirad | | | | | | | Department of Chemistry, Semnan University, Semnan, Iran | *Corresponding author: | | | | | | | Maryam Rajabi | | | | | | | Department of Chemistry, Semnan University, Semnan 35195-363, Iran | | | | | | | E-mail address: mrajabi@semnan.ac.ir | | | | | | | Fax: +98-23-33654110 | | | | | | Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2020 Fig. 1S. FT-IR spectra of GO, GO-Fe $_3$ O $_4$ and GO-Fe $_3$ O $_4$ -DA Fig. 2S. Magnetic hysteresis loops of GO-Fe $_3$ O $_4$ and GO-Fe $_3$ O $_4$ -DA Fig. 3S Comparison of the adsorbents Fig. 4S Results acquired from repeated usage of GO-Fe₃O₄-DA after cyclic regeneration. Table 1S. Influence of potentially interfering ions on recovery of metal ions. (Conditions: 10 mg of adsorbent, pH 8. Desorption conditions: 300 μL of HNO₃ with concentration of 3 mol L^{-1} . | | Limit concentration | | | | |--------------------|----------------------|-------------------------------|-----------------|--| | Ions | (Interfering ion con | ncentration / analyte ion con | concentration) | | | _ | Pb(II) | Cu(II) | Ni(II) | | | $ m Mg^{2+}$ | 1000 | 1000 | 1000 | | | Mn^{2+} | 900 | 800 | 900 | | | $\mathbb{Z}n^{2+}$ | 800 | 900 | 900 | | | NH ⁴⁺ | 1000 | 800 | 1000 | | | Al ³⁺ | 1000 | 1000 | 900 | |--------------------------------|------|------|------| | Na ⁺ | 1000 | 1000 | 1000 | | Ba ⁺ | 1000 | 1000 | 1000 | | SO ₄ ² - | 1000 | 1000 | 1000 |