Supporting Information for

Aptamer-enhanced fluorescence determination of bisphenol A after

magnetic solid-phase extraction using Fe₃O₄@SiO₂@ Aptamer

Zhou Xu^{*}^a, Yanqiu Chen^a, Yao Tang^a, Maolong Chen^a, Wei Chen^b and Yunhui Cheng^{*a}

^{a.} School of Chemistry and Food Engineering, Changsha University of Science & Technology, Changsha 410114, China.

^{b.} School of Food and Biological Engineering, Hefei University of Technology, Hefei 230009, China.

*Corresponding author. E-mail addresses: xz_jnu@126.com (Z. Xu); Chengyh6488@gmail.com (YH. Cheng);

1. O 1s core-level XPS spectra of Fe₃O₄@SiO₂-NH₂ and Fe₃O₄@SiO₂@Apt

Fig. S1. O 1s core-level XPS spectra of (A) $Fe_3O_4@SiO_2-NH_2$, (B) $Fe_3O_4@SiO_2@Apt$.

2. Label the number of aptamers on superparamagnetic nanoparticles

The coupling rate of BPA aptamer on Fe₃O₄@SiO₂-NH₂ nanoparticles was studied using a FAM-labeled BPA aptamer (5'-carboxyl-CCG GTG GGT GGT CAG GTG GGA TAG CGT TCC GCG TAT GGC CCA GCG CAT CAC GGG TTC GCA CCA-3'-FAM). First, a set of five concentrations of FAM-labeled BPA aptamers (20 to 100 nM) was prepared as standards to draw a calibration curve of fluorimetry, as shown in Fig. S2. One milliliter of the $Fe_3O_4@SiO_2-NH_2$ nanoparticles (3.3×10⁻¹¹ M) was activated by 0.3 mL of EDC (200 mM) and NHS (100 mM) for 30 min. After magnetic separation, the Fe₃O₄@SiO₂-NH₂ nanoparticles (3.3×10^{-14} mol) and 100 µL of FAM-labeled BPA aptamer (1.0×10⁻⁷ M) was incubated in binding buffer (Tris 40mM, NaCl 100mM, CaCl₂ 5mM and MgCl₂ 5mM, pH7.4) for 6 h at room temperature. Add 100 µL of FAM-labeled BPA aptamer (0 M) as a blank sample. Magnetic separation was applied to separate bound from unbound FAM-labeled BPA aptamers. The fluorescence absorption of supernatant was then measured by fluorescence spectroscopy (F-7000 FL spectrophotometer). Excitation and emission wavelengths were set at 492 nm and 518 nm, respectively. Related concentration was calculated by standard curve and the concentration of bound FAM-labeled BPA aptamers was extracted according to the fluorescence absorbance of samples considering Equation 1.

$$A_{bound} = \begin{bmatrix} A_{initial} - A_{unbound} \end{bmatrix} - A_{blank} \qquad Eq. 1$$

The experiments were performed in triplicate. The results showed that the unbound FAM-labeled BPA aptamers were about 8.9×10^{-8} M (8.9×10^{-12} mol), therefore the bound FAM-labeled BPA aptamers were 1.1×10^{-8} M (1.1×10^{-12} mol). The molar ratio of the bound aptamers with Fe₃O₄@SiO₂-NH₂ was 30:1."

Fig. S2. Plot of fluorescence intensity versus FAM-labeled BPA aptamers concentration.

3. The dissociation constant (K_d) of the Fe₃O₄@SiO₂@Apt towards free BPA

Standard stock solutions of BPA (10 μ M) were prepared with a mobile phase of methanol/H₂O (50/50, v/v). The stock solutions were further diluted with the mobile phase to obtain BPA solutions at 15 concentrations from 10 μ M to 0.1 nM. One milliliter BPA solutions were added to 10 mL centrifuge tubes, and 10 mg of Fe₃O₄@SiO₂@Apt (approximately 11 nM of BPA-aptamer bound) was dispersed into the sample solutions using a homemade stirrer for 3 min. After standing for 15 min, magnetic separation was applied to separate bound from unbound BPA. An 80 μ L supernatant sample was subjected to HPLC analysis to determine the concentration of unbound BPA. The experiments were performed in triplicate. The initial concentration of BPA was A₀, the unbound concentration after incubation was A₁, the fraction bound was calculated as (A₀-A₁)/A₀. The dissociation constants, or K_d , were calculated from the resulting sigmoidal curves using the built-in Hill1 sigmoidal

fit in Origin 8.5.

Fig. S3. Binding behavior of free BPA to the $Fe_3O_4@SiO_2@Apt$ (K_d~70.38 nM, r^2 =0.988).

4. Calculation method of LOD and LOQ

The LOD of this method was calculated by $3\sigma_b$ /slope, and the limit of quantitation (LOQ) was calculated by $10\sigma_b$ /slope (σ_b , standard deviation of the blank samples).

5. Inter-day and intra-day precision of the method

Table S1 Inter-day and intra-day precision of the method

	Inter-day precision (RSD%, n=5)			Intra-day precision (RSD%, n=5)		
Analytes	Low	Medium	High	Low	Medium	High
BPA	9.5	8.1	6.3	8.6	7.9	4.9

"High", "Medium", and "Low" denote the concentrations of BPA in milk samples were 100, 20, and 5 ng mL⁻¹, respectively.