Supporting information

Mitochondria-targeted Fluorescent Probe for Imaging Endogenous Hydrogen Sulfide in Cellular Antioxidant Stress

Songtao Cai,^{a,b} Chang Liu,^a Song He,^a Liancheng Zhao^b and Xianshun Zeng*^{a,b}

^aTianjin Key Laboratory for Photoelectric Materials and Devices, and Key Laboratory of Display Materials & Photoelectric Devices, Ministry of Education, School of Materials Science & Engineering, Tianjin University of Technology, Tianjin 300384, China. Fax: (+86)22-60215226; Tel: (+86)22-60216748; E-mail: <u>xshzeng@tjut.edu.cn</u> ^bSchool of Materials Science and Engineering, Harbin Institute of Technology, Harbin 150001, China.

Contents

1. Additional spectrum and data

Table S1 Comparison of some reported probes for the detection of H_2S in the literature

Fig. S1 The absorbance and fluorescence intensity of L versus Na₂S concentration

Fig. S2 HRMS spectrum of L in the presence of Na₂S

Fig. S3 Kinetic analysis

Fig. S4 Fluorescence responses of L for the detection of H_2S in different pH solutions

Fig. S5 The cytotoxicity of L in HeLa cells

Fig. S6 -S11 ^{1}H , 13 C NMR and HRMS spectrum

2. References

1. Additional data and spectrum

Table S1 Comparison of some reported probes for the detection of H₂S in the literature

<u></u>	la una l	organelle-	Limit of	2	Calution
Structrure of sensors	Jre of sensors Journal	targeted	detecton	Λ _{em}	Solution
	Sens Actuators B				PBS/DMSO
	Chem., 2018,	-targeted	47 μM	635 nm	(v/v, 8/2, 10
	256 , 342-350				mM, pH 7.4)
0	Spectrochim.				PBS/DMSO
	Acta. A Mol.	NO	320 nM	503 nm	(v/v, 1/1, 10
	Biomol.				mM, pH 7.4)
	Spectrosc.,				

2020, **229**,

117987-117995

Se=0	Chem. Commun., 2013, 49 , 1014-1016	NO		510 nm	PBS/MeCN (v/v, 7/3, 20 mM, pH 7.4)
CN_CO ₂ Me	Org. Lett., 2012, 14 , 2184-2187	NO	1 μΜ	515 nm	PBS (10 mM, pH 7.4)
F^{CHO}_{F} COOMe	Nat. Commun., 2011, 2, 495- 501	NO		388 nm	PBS buffer (10 mm, pH 7.4, 10% CH ₃ CN)
	Angew. Chem. Int. Ed., 2013, 52 , 1688-1691	NO	1 μΜ	652/510 nm	PBS/DMSO (v/v, 98/2, 20 mM, pH 7.4)
P B F O O O O O O O O O O O O O O O O O O	Talanta, 2018, 181 , 104-111	NO	1.27 μM	592 nm	HEPES/DMSO (v/v, 1/1, 20 mM, pH 7.4)
NC CN	Sensor. Actuat. B-Chem., 2018, 262 , 837-844	NO	6 nM	666 nm	HEPES/DMSO (v/v, 8/2, 10 mM, pH 7.4)

Anal. Methods., 2018, 10 , 604- 610	Lysosome- targeted	69 nM	547 nm	PBS/DMSO (v/v, 4/1, 10 mM, pH 7.4)

R1 =H
R2 =
$R3 = R^+$

M

	R2:			
	Lysosome-			
J. Mater. Chem.	targeted			PBS/DMSO
B, 2017, 5 ,	R3:	R1: 139 nM	481 nm	(v/v, 7/3, 10
2172-2180	Mitochondria			mM, pH 7.4)
	-targeted			

	Org. Biomol.	lucacama			PBS/DMSO
N N	Chem., 2018,	Lysosome-	214.5 nM	510 nm	(v/v, 9/1, 20
N3	16 , 712-716	largeteu			mM, pH 7.4)
5					
N ₃ V V V V V V					

O _B O	Chem. Eur. J.			
\bigcirc	2015, 21 , 15167	NO	 525 nm	PBS
7-0	- 15172			

Me=N 2013, 99, 308- -targeted PBS (pH 7.4, 315 1.0 μM 440 nm	Ph ₃ P +	Dyes Pigments, 2013, 99 , 308- 315	Mitochondria -targeted	1.0 μΜ	440 nm	PBS (pH 7.4, 1% CH₃CN)
--	---------------------	---	---------------------------	--------	--------	---------------------------

Sens Actuators B

Chem., 2018,	
260 , 264-273	

Lysosome-	
	330 nM
targeted	

PBS (10 mM,
pH 7.4 or 5.0)

536 nm

02

Spectrochim.				
Acta. A Mol.				
Biomol.	Lysosome-	11 nM	600 mm	PBS (10 mM,
Spectrosc.,	targeted		680 nm	pH 7.2)
2019, 213 , 416-				
422				

	Talanta, 2019,				PBS/DMSO
	197 , 326-333	Mitochondria -targeted	89.3 nM	720 nm	(v/v, 99/1, 10
					mM, pH 7.4)

Tetrahedron, 2015, 71 , 8572- 8576	Lysosome- targeted	430 nM	560 nm	PBS/DMSO (v/v, 98/2, 20 mM, pH 7.4 or 6.0)

OH HN HN MeO MeO CHO	Anal. Chem. , 2015, 87 , 1188-1195	NO	50 nM	524 nm	HEPES (pH 7.4, 1% CH₃CN)
MeO					

Fig. S1. The fluorescence intensity of L (10 μ M) responding to Na₂S (10 eq.) with excitation wavelength at 600 nm.

Fig. S2. The absorbance ($A_{380 \text{ nm}}$, a) and fluorescence intensity ($F_{455 \text{ nm}}$, b) of L (10 μ M) depending on Na₂S concentration. A linear relationship between the absorbance and the Na₂S concentration (a), and the fluorescence intensity and the Na₂S concentration (b) could be obtained in the 0-60 μ M concentration range ($R^2 = 0.9976$ and 0.9958). The detection limit (DOL) can be calculated with the equation, ¹ DOL = $3\sigma/k$, where "k" is the intensity versus [H₂S], and " σ " is the standard deviation of the blank signal obtained without H₂S ($\sigma_L = 1.22 \times 10^{-5}$ and 0.093).

Fig. S3. HRMS spectrum of the solution of L interacted with Na₂S.

Fig. S4. The pH-dependent fluorescence signals of L (10 μ M) in the absence and presence of Na₂S (10 eq.). λ_{ex} = 380 nm, λ_{em} = 455 nm.

Fig. S5. (a) The time-dependent fluorescence signals of L (10 μ M) with addition of Na₂S, Cys, Hcy and GSH (100 equiv.), respectively. (b) Kinetic analysis of the reaction of L and H₂S. The pseudo-first-order rate constant *k* can be calculated with the equation,² k = k'C, where "*k*" is Ln[(F_{max}-F_t)/F_{max}] versus time, "C" is the initial concentration of the probe L. $\lambda_{ex} = 380$ nm, $\lambda_{em} = 455$ nm.

Fig. S6. Cell viability estimated by MTT proliferation tests versus incubation concentrations of L.

Fig. S7. (A) Bright field of the fluorescence images of Hela cells incubated with L (2 μ M) (a1), L (2 μ M) and Na₂S (10 μ M) (a2), and L (2 μ M) and Na₂S (20 μ M). (B) Bright field of the fluorescence images of Hela cells incubated with L (2 μ M), (b1), L (2 μ M) and Cys (100 μ M) (b2), L (2 μ M) and Cys (200 μ M) (b3), L (2 μ M) and GSH (100 μ M) (b4), L (2 μ M) and GSH (200 μ M) (b5), and L (2 μ M) and Cys/GSH (200 μ M) (b6). λ_{ex} = 405 nm, λ_{em} = 420-475 nm. Scale bar: 20 μ m.

Fig. S8. a) Bright field of the fluorescence images of Hela cells containing **L** and Lyso-tracker incubated with Na₂S (10 μ M); b) Bright field of the fluorescence images of Hela cells containing **L** and Mito-tracker incubated with Na₂S (10 μ M). Scale bar: 10 μ m

Fig. S9. a) Bright field of the fluorescence images of H_2O_2 pretreated Hela cells containing **L** and Lysotracker; b) Bright field of the fluorescence images of H_2O_2 pretreated Hela cells containing **L** and Mitotracker; c) Bright field of the fluorescence images of PMA pretreated Hela cells containing **L** and Lysotracker; d) Bright field of the fluorescence images of PMA pretreated Hela cells containing **L** and Mitotracker; d) Bright field of the fluorescence images of PMA pretreated Hela cells containing **L** and Mitotracker; d) Bright field of the fluorescence images of PMA pretreated Hela cells containing **L** and Mitotracker; d) Bright field of the fluorescence images of PMA pretreated Hela cells containing **L** and Mitotracker. Scale bar: 10 μ m

Fig. S10. ¹H NMR spectra of 1

Fig. S11. ¹³C NMR spectra of 1

Fig. S12. HRMS spectra of 1

Fig. S13. ¹H NMR spectra of L

Fig. S14. ¹³C NMR spectra of L

Fig. S15. HRMS spectra of L

2. References:

- 1 G. Long and J. Winefordner, Anal. Chem., 1983, 55, 712A-24A.
- Q. X. Han, Z. H. Shi, X. L.Tang, L. Z. Yang, Z. L. Mou, J. Li, J. M. Shi, C. Y. Chen, W. Liu, H. Yang, W. S. Liu, Org. Biomol. Chem., 2014, 12, 5023–5030.