ELECTRONIC SUPPLEMENTARY MATERIAL

Rapid quantification of ruthenium(II) polypyridyl anti-cancer drugs using selective ligand dissociation LC-MS/MS method

Stephanie Mehanna^{a,b}, Kikki Bodman-Smith^b, Costantine F. Daher^a, Rony S. Khnayzer^{a*}

^aDepartment of Natural Sciences, Lebanese American University, Chouran, Beirut 1102-2801

^bFaculty of Health and Medical Sciences, Department of Microbial and Cellular Sciences, University of Surrey, Guildford, Surrey, GU2 7XH

*rony.khnayzer@lau.edu.lb

Table S1 LC-MS/MS conditions used for the detection of Ru1, Ru2, Ru3, and IS.

	Ru1	Ru2	Ru3	IS						
Mobile Phase		Isoci	ratic							
	5% A: H ₂ O (0.1% Formic acid)									
		95% B: MeOH (0	.1% Formic acid)							
		Flow rate (0	.5 mL min ⁻¹)							
		Column over	n set at 40 °C							
Precursor ion (m/z)	373.2	387.2	297.1	305.2						
Product ions (m/z)	157.1	308.7	181.1	178.2						
	294.4	361.2	218.7	263.3						
Collision energy (V)	20	27	27	33						
Retention time (min)	0.45	0.40	0.38	0.64						
Mass mode	H-ESI positive	H-ESI positive	H-ESI positive	H-ESI positive						
	mode	mode	mode	mode						
Scan type	SRMª	SRM	SRM	SRM						

^aSRM, selected reaction monitoring

Fig. S1. LC-MS/MS spectra of Ru2. Acetonitrile was spiked with Ru2 at the lowest limit of quantification (LLOQ). Samples were then injected (1 μ L) and analyzed by LC-MS/MS using the conditions listed in Table 1. Precursor ion: Ru2: 387.2; Transitions to product ions (inset): 387.2 \rightarrow 308.7, 387.2 \rightarrow 361.2.

Fig. S2. LC-MS/MS spectra of Ru3. Acetonitrile was spiked with Ru3 at the lowest limit of quantification (LLOQ). Samples were then injected (1 μ L) and analyzed by LC-MS/MS using the conditions listed in Table 1. Precursor ion: Ru3: 297.1; Transitions to product ions (inset): 297.1 \rightarrow 181.1, 297.1 \rightarrow 218.7.

Fig. S3. Representative chromatograms of Ru2 and IS. Acetonitrile was spiked with 0.06 μ M Ru2 and IS at 15 ng mL⁻¹. The resulting solution was then injected (1 μ L) and analyzed by LC-MS/MS. A, IS: RT = 0.64 min; B, Ru2: RT = 0.40 min.

Fig. S4. Representative chromatograms of Ru3 and IS. Acetonitrile was spiked with 0.06 μ M Ru3 and IS at 15 ng mL⁻¹. The resulting solution was then injected (1 μ L) and analyzed by LC-MS/MS. A, IS: RT = 0.65 min; B, Ru3: RT = 0.44 min.

Fig. S5. Calibration curves developed as standards for the quantification of Ru2 in cells, plasma, or urine. Graphs represent the peak-area ratios of Ru2 to IS (y axis) versus the nominal concentrations of Ru2 (x axis) and curves are fitted to a line having the equation y = ax + b using a weighting factor $1/x^2$, $r^2 \ge 0.99$. Concentrations were interpolated from the calibration curves and all non-zero calibrators were within \pm 15% deviation from the theoretical values which complied with

validation guidelines. A, in cells, y = 156.9x - 0.5276, $r^2 = 0.994$; B, in plasma, y = 156.1x - 0.3955, $r^2 = 0.990$ and C, in urine, y = 159.9x - 0.3530, $r^2 = 0.996$.

Fig. S6. Calibration curves developed as standards for the quantification of Ru3 in cells, plasma, or urine. Graphs represent the peak-area ratios of Ru3 to IS (y axis) versus the nominal concentrations of Ru3 (x axis) and curves are fitted to a line having the equation y = ax + b using a weighting factor $1/x^2$, $r^2 \ge 0.99$. Concentrations were interpolated from the calibration curves and all non-zero calibrators were within \pm 15% deviation from the theoretical values which complied with validation guidelines. A, in cells, y = 102.4x - 0.0528, $r^2 = 0.991$; B, in plasma, y = 99.13x - 0.8471, $r^2 = 0.996$ and C, in urine, y = 93.1x - 0.2546, $r^2 = 0.996$.

Fig. S7. HPLC chromatograms of blank samples analyzed for signal interference at the RT of Ru1. A) cells; B) plasma; C) urine. Product ion shifts expected, $373.2 \rightarrow 157.1$, $373.2 \rightarrow 294.4$.

Fig. S8. HPLC chromatograms of blank samples analyzed for signal interference at the RT of Ru2. A) cells; B) plasma; C) urine. Product ion shifts expected, $387.2 \rightarrow 308.7$, $387.2 \rightarrow 361.2$.

Fig. S9. HPLC chromatograms of blank samples analyzed for signal interference at the RT of Ru3. A) cells; B) plasma; C) urine. Product ion shifts expected, $297.1 \rightarrow 181.1$, $297.1 \rightarrow 218.7$.

Fig. S10. HPLC chromatograms of blank samples analyzed for signal interference at the RT of the IS. A) cells; B) plasma; C) urine. Product ion shifts expected, $305.2 \rightarrow 178.2$, $305.2 \rightarrow 263.3$.

Fig. S11. HPLC chromatograms and product ion scans of Ru1 at the LLOQ. A) in cells, RT: 0.36 min; B) in plasma, RT: 0.39 min; C) in urine, RT: 0.36 min. Product ion shifts, $373.2 \rightarrow 157.1$, $373.2 \rightarrow 294.4$.

Fig. S12. HPLC chromatograms and product ion scans of Ru2 at the LLOQ. A) in cells, RT: 0.47 min; B) in plasma, RT: 0.41 min; C) in urine, RT: 0.39 min. Product ion shifts, $387.2 \rightarrow 308.7$, $387.2 \rightarrow 361.2$.

Fig. S13. HPLC chromatograms and product ion scans of Ru3 at the LLOQ. A) in cells, RT: 0.49 min; B) in plasma, RT: 0.44 min; C) in urine, RT: 0.41 min. Product ion shifts, 297.1 \rightarrow 181.1, 297.1 \rightarrow 218.7.

Fig. S14. HPLC chromatograms and product ion scans of the IS at 15 ng mL⁻¹. A) in cells, RT: 0.64 min; B) in plasma, RT: 0.65 min; C) in urine, RT: 0.65 min. Product ion shifts, $305.2 \rightarrow 178.2$, $305.2 \rightarrow 263.3$.

Table S2 Response of Ru1, Ru2, and Ru3 in blank samples (cells, plasma, or urine) versus samples spiked at the LLOQ. Six samples from individual sources were used at each condition and values are the mean area measured by LC-MS/MS ± SD.

	Cells				Plasma			Urine		
Analyte	Blank (Area ± SD)	Sample at LLOQ (Area ± SD)	% response ^a	Blank (Area ± SD)	Sample at LLOQ (Area ± SD)	% response ^a	Blank (Area ± SD)	Sample at LLOQ (Area ± SD)	% response ^a	
Ru1	457 ± 142	23541 ± 1082	1.94	339 ± 0.00	25462 ± 2215	1.33	421 ± 96.5	25179 ± 3373	1.67	
Ru2	801 ± 27.9	51497 ± 88.06	1.56	0.00 ± 0.00	59370 ± 3736	0.00	918 ± 102	53432 ± 2000	1.72	
Ru3	0.00 ± 0.00	151012 ± 11824	0.00	1111 ± 304	151761 ± 2943	0.73	241 ± 85.7	151761 ± 2943	0.16	

LLOQ for Ru1 and Ru2, 0.01 $\mu M;$ LLOQ for Ru3, 0.04 $\mu M.$

$$%$$
 reponse = $\frac{Area \ blank}{Area \ sample \ at \ LLOQ} \times 100$

-

Table S3 Response of IS in blank samples (cells, plasma, or urine) versus QC samples or zero calibrators. Six samples from

Matrix	Blank (Area ± SD)	QC samples (Area ± SD)	% response ^a	Zero calibrator (Area ± SD)	% response ^a
Cells	151 ± 23.2	45840 ± 6394	0.33	52376 ± 175	0.29
Plasma	136 ± 35.8	36850 ± 7956	0.37	32954 ± 9480	0.41
Urine	68.2 ± 25.5	48644 ± 677	0.14	38832 ± 1052	0.18

individual sources were used at each condition and values are the mean area measured by LC-MS/MS ± SD.

 $_{a}\%$ reponse = $\frac{Area \ blank}{Area \ sample \ at \ LLOQ} \times 100$

Table S4 Matrix effect on the response of Ru1, Ru2, Ru3, and IS. Values represent the mean area (\pm SD) measured in neat standards (acetonitrile spiked with the analytes at the LQC and HQC levels or IS at 15 ng mL⁻¹) and their equivalents in samples of cells, plasma, or urine spiked with the analytes or IS post-extraction, n=6. The % difference represents the deviation of extracted samples from neat standards. LOQ for Ru1 and Ru2, 0.03 μ M; LQC for Ru3, 0.1 μ M; HQC for Ru1 and Ru2, 0.5 μ M; HQC for Ru3, 1.5 μ M.

Complex	ex Ru1		F	Ru2	R	ku3	21	
QC	LQC	HQC	LQC	HQC	LQC	HQC	15	
NS	58484 ±	794353 ±	198843 ±	4524355 ±	307119 ±	5 221194 ±	40857	
Mean ± SD	546	18774	2392	121183	121183	283685	± 1021	
Cells		794627	109465 1	4510170 -	200485		41096	
Mean ± SD	58642 ± 703	784637± 47994	198465 ± 20878	4512173 ± 408373	309485 ± 11063	5242925 ±	± 1365	
(% Difference ^a)	(-0.27%)	(+1.22%)	(+ 0.19%)	(+ 0.27%)	(- 0.77%)	(- 0.42%)	(- 0.58%)	
Plasma Mean ± SD	58900 ±	795506 ±	197559 ±	4520924 ±	306623 ±	5263393 ±	40952	
(% Difference ^a)	509 (-0.71%)	72041 (-0.15%)	6022 (+ 0.65%)	126758 (+ 0.08%)	36055 (+ 0.16%)	182086 (- 0.8%)	± 1373 (- 0.23%)	
Urine Mean ± SD (% Difference ^a)	59140 ± 6289 (-1.1%)	791219 ± 33884 (+0.39%)	200531 ± 15113 (- 0.85%)	4539302 ± 421029 (- 0.33%)	309511 ± 19951 (- 0.78%)	5272485 ± 264329 (- 0.98%)	40995 ± 1348 (- 0.34%)	

NS, neat standard

$$\label{eq:constraint} \begin{subarray}{l} \label{eq:constraint} \end{subarray} \end{subarray}$$

Table S5 Intra-day and inter-day variability in the concentration of Ru2 measured by LC-MS/MS in cells (A), plasma (B), and urine (C). Quantification was based on calibration curves in Fig. S5. Six replicates were used at each QC and three independent runs were performed. LLOQ, 0.01 μM ; LOQ, 0.03 μM ; MQC, 0.1 μM , and HQC, 0.5 $\mu\text{M}.$

			Ce	lls			Plas	ma			Uri	ne	
	QC	LLOQ	LQC	MQC	нос	LLOQ	LQC	MQC	HQC	LLOQ	LQC	MQC	нос
Intra-day variability	Mean ± SD (μM)	0.0098 ±	0.262 ±	0.0907 ±	0.435 ±	0.0084 ±	0.0343 ±	0.0991 ±	0.430 ±	0.0098 ±	0.0340 ±	0.0993 ±	0.532 ±
	Precision-RSD (%)	0.0014 14.4	0.0017 6.5	0.0075 8.3	0.110 2.5	0.0010 11.3	0.0002 0.7	0.0078 7.8	0.0133 3.1	0.0011 10.7	0.0030 8.8	0.0076 7.6	0.0493 9.3
	Accuracy-REª (%)	- 1.6	- 12.8	- 9.3	- 13.1	- 15.7	- 14.4	- 0.9	- 14.1	- 1.5	+ 13.3	- 0.7	+ 6.4
1	Mean ± SD (μM)	0.0106 ± 0.0006	0.0304 ± 0.0022	0.0935 ± 0.0074	0.5003 ± 0.0595	0.0110 ± 0.0014	0.0313 ± 0.0024	0.0963 ± 0.0024	0.471 ± 0.0350	0.0087 ± 0.0010	0.0290 ± 0.0043	0.0914 ± 0.0071	0.491 ± 0.0356
(3 runs)	Precision-RSD (%)	5.8	7.3	7.9	11.8	13.1	7.7	2.5	7.4	11.1	15.0	7.8	7.2
	Accuracy-RE ^a (%)	+ 5.7	+ 1.5	- 6.5	+ 0.59	+ 10.4	+ 4.2	- 3.7	- 5.7	- 12.6	- 3.4	- 8.6	- 1.7

 $RE = \frac{Mean\ calculated\ concentration - Nominal\ concentration}{Nominal\ concentration} \times 100$

Table S6 Intra-day and inter-day variability in the concentration of Ru3 measured by LC-MS/MS in cells (A), plasma (B), and urine (C). Quantification was based on calibration curves in Fig. S6. Six replicates were used at each QC and three independent runs were performed. LLOQ, 0.04 μM ; LOQ, 0.1 μM ; MQC, 0.5 μM , and HQC, 1.5 $\mu\text{M}.$

			Ce	lls			Plas	ma			Uri	ne	
	QC	LLOQ	LQC	MQC	нос	LLOQ	LQC	MQC	HQC	LLOQ	LQC	MQC	HQC
	Mean + SD	0.0353	0.106	0.443	1.645	0.0467	0.104	0.532	1.453	0.0360	0.0855	0.434	1.455
	(±	±	±	±	±	±	±	±	±	±	±	±
Intra-day variability	(μινι)	0.0048	0.0138	0.0558	0.1302	0.0018	0.00194	0.0201	0.0412	0.0015	0.0035	0.0628	0.1775
	Precision-RSD (%)	13.5	13.0	12.6	7.9	3.8	1.9	3.8	2.8	4.1	4.1	14.5	12.2
	Accuracy-RE ^a (%)	- 11.7	+ 5.8	- 11.3	+ 9.7	+ 16.7	+ 4.0	+ 6.3	- 3.1	- 9.8	- 14.5	- 13.1	- 3.0
	Moon + SD	0.0384	0.0982	0.497	1.457	0.0464	0.110	0.545	1.520	0.0405	0.0945	0.518	1.570
	(a c)	±	±	±	±	±	±	±	±	±	±	±	±
Inter deu veriebility	(μινι)	0.0028	0.0076	0.0600	0.1761	0.0008	0.0052	0.0149	0.0717	0.0040	0.0087	0.0727	0.0992
(3 runs)	Precision-RSD (%)	7.2	7.7	12.0	12.1	1.7	4.7	2.7	4.7	9.9	9.2	14.0	6.3
	Accuracy-REª (%)	- 3.9	- 1.8	- 0.51	- 2.8	+ 16.0	+ 9.8	+ 9.1	+ 1.3	+ 1.2	- 5.5	+ 3.5	+ 4.7

 $RE = \frac{Mean \ calculated \ concentration - Nominal \ concentration}{Nominal \ concentration} \times 100$

Nominal concentration

Table S7 Recovery of Ru2 from cells, plasma, and urine. Quantification was based on calibration curves represented in Fig. S5, and six replicates were used at each QC. LOQ, 0.03 μ M; MQC, 0.1 μ M, and HQC, 0.5 μ M.

	LQC	MQC	HQC
Recovery from cells ^a (%) ± SD	85 ± 10	96 ± 9.9	91 ± 3.4
Recovery from plasma ^a (%) ± SD	101 ± 15	104 ± 11	95 ± 8.7
Recovery from urine ^a (%) ± SD	102 ± 11	99 ± 10	116 ± 22

 $Recovery = \frac{Mean \ concentration \ of \ extracted \ sample}{Mean \ concentration \ of \ the \ sample \ post-extraction} \times 100$

Table S8 Recovery of Ru3 from cells, plasma, and urine. Quantification was based on calibration curves represented in Fig. S6, and six replicates were used at each QC. LOQ, 0.1 μM ; MQC, 0.5 μM , and HQC, 1.5 $\mu\text{M}.$

	LQC	ΜQC	HQC					
Recovery from cells ^a (%) ± SD	93 ± 15	80 ± 13	112 ± 11					
Recovery from plasma ^a (%) ± SD	98 ± 4.2	101 ± 5.1	102 ± 6.8					
Recovery from urine ^a (%) ± SD	101 ± 8.0	97 ± 18	100 ± 15					
Mean concentration of artrasted sample								

 ${}_{a} Recovery = \frac{Mean \ concentration \ of \ extracted \ sample}{Mean \ concentration \ of \ the \ sample \ post-extraction} \times 100$

Table S9 Autosampler and freeze-thaw stability of Ru2. Extracted samples from cells, plasma, or urine were incubated in the autosampler for 18 h or exposed to four freeze-thaw cycles (from -80 °C to room temperature), before analysis. Quantification was based on calibration curves represented in Fig. S5, and three replicates were used at each QC level. LOQ, 0.03 µM and HQC, 0.5 µM.

		Cells		P	lasma	Urine			
-	QC	LQC	HQC	LQC	HQC	LQC	HQC		
Autosampler	Mean ± SD (µM)	0.032 ± 0.001	0.490 ±	0.030 ±	0.507 ± 0.022	0.027 ±	0.478 ± 0.004		
stability	RE ^a (%)	+ 6.0	- 2.1	- 0.01	+ 1.4	- 10.9	- 4.4		
Freeze-thaw	Mean ± SD (μ M)	0.030 ± 0.004	0.438 ± 0.029	0.029 ± 0.003	0.451 ± 0.028	0.033 ± 0.001	0.510 ± 0.058		
stability	REª (%)	+ 1.47	- 12.4	- 4.1	- 9.7	+ 9.5	+ 1.9		
$RE = \frac{Mean \ calculated \ concentration - Nominal \ concentration}{Mean \ calculated \ concentration} \times 100$									

Nominal concentration

а

Table S10 Autosampler and freeze-thaw stability of Ru3. Extracted samples from cells, plasma, or urine were incubated in the autosampler for 18 h or exposed to four freeze-thaw cycles (from -80 °C to room temperature), before analysis. Quantification was based on calibration curves represented in Fig. S6, and three replicates were used at each QC level. LOQ, 0.1 μ M and HQC, 1.5 μ M.

		Cells		PI	asma	Urine		
	QC	LQC	HQC	LQC	HQC	LQC	HQC	
Autosampler	Mean ± SD (μM)	0.100 ± 0.010	10 1.516 ± 0.111 ± 0.003		1.537 ± 0.053	0.104 ± 0.003	1.537 ± 0.015	
stability	RE ^a (%)	- 0.21	+ 1.1	+ 11.5	+ 2.5	+ 4.3	+ 2.4	
Freeze-thaw	Mean ± SD (μ M)	0.098 ± 0.012	1.375 ± 0.036	0.010 ± 0.002	1.542 ± 0.051	0.112 ± 0.015	1.276 ± 0.178	
stability	RE ^a (%)	- 1.6	- 8.3	- 0.3	+ 2.8	+ 12.5	- 14.9	

 $RE = \frac{Mean \ calculated \ concentration - Nominal \ concentration}{Nominal \ concentration} \times 100$

a

Nominal concentration

Fig. S15. Calibration curve for 102 Ru as measured by ICP-MS. The Ru standard solution (Sigma-Aldrich) was diluted with 2% HNO₃ to final concentrations of 0.1, 0.2, 0.4, 0.6, 0.8, 1, 5, 10, 50, and 100 ppb, and indium was included as an internal standard (5 ppb). Calibration standards were acquired on Thermo Scientific iCAP RQ ICP-MS, using the Qtegra software. y = 56937x + 66.7, $r^2 = 0.9998$, lower limit of detection or LOD = 0.0027 ppb.