Electronic Supplementary Material (ESI) for Analytical Methods. This journal is © The Royal Society of Chemistry 2021

Supporting Information

Dry storage of multiple reagent types within a paper microfluidic device for phenylalanine monitoring

Lael Wentland, Rachel Polaski, and Elain Fu*

School of Chemical, Biological, and Environmental Engineering, Oregon State University, Corvallis, OR 97331

Storage of colorimetric reagents mPMS and NBT

Differences between the mean signals of stored reagents and freshly-dried reagents are displayed. The difference in means was calculated as follows,

difference in means = $(freshly \square - dried samples mean) - (stored samples mean)$, and then plotted for various storage times. The error bars display the 99% confidence intervals using the t-distribution. Degrees of freedom were estimated using the Welch-Satterthwaite approximation.

signal from the stored colorimetric reagents with "No NADH" was significantly the mean signal from the freshly-dried colorimetric reagents with "No NADH".

Comparison of PheDH activity from different source organisms

The effect of vacuum drying on the activity of two PheDHs, one from *Sporosarcina* sp. (Sigma-Aldrich) and another from *Thermoactinomyces intermedius* (Creative Enzymes), was investigated. Each of the enzymes was prepared in buffer (220 mM BTP pH 9.3) at 60 U/mL (using manufacturer specifications for U/mg of enzyme). Enzyme in buffer (10 μ L) was added to Eppendorf tubes (N = 5), and the open tubes were dried in a vacuum dryer for 23 hours. Samples were then rehydrated in buffer (220 mM BTP pH 9.3). The enzyme (final concentration 0.5 U/mL) was added to a 384 well plate with Phe (final concentration 40 mg/dL) and the reaction was initiated with NAD⁺ (final concentration 5 mM). The 340 nm absorbance signal at 10 minutes was recorded in a plate reader (Synergy-2, BioTek, Winooski, WA, USA), and the absorbance from wells with PheDH and NAD⁺ only, was subtracted. The background-corrected absorbance signal was compared to the background-corrected absorbance signal of the analogous reaction using enzyme that had not been dried.

Stored PheDH enzyme activity over time

Differences between the mean signals of stored reagents and freshly-dried reagents are displayed. The difference in means was calculated as follows,

difference in means = $(freshly \square - dried samples mean) - (stored samples mean)$, and then plotted for various storage times. The error bars display the 99% confidence intervals using the t-distribution. Degrees of freedom were estimated using the Welch-Satterthwaite approximation.

Storage of coenzyme NAD⁺

Differences between the mean signals of stored reagents and freshly-dried reagents are displayed. The difference in means was calculated as follows,

difference in means = $(freshly \square - dried samples mean) - (stored samples mean)$, and then plotted for various storage times. The error bars display the 99% confidence intervals using the t-distribution. Degrees of freedom were estimated using the Welch-Satterthwaite approximation.

Complete devices with all reagents stored dry

Differences between the mean signals of stored reagents and freshly-dried reagents are displayed. The difference in means was calculated as follows,

difference in means = $(freshly \square - dried samples mean) - (stored samples mean)$, and then plotted for various storage times. The error bars display the 99% confidence intervals using the t-distribution. Degrees of freedom were estimated using the Welch-Satterthwaite approximation.

