## **Supporting Information**

For

Mesoporous Silica Integrated with Fe<sub>3</sub>O<sub>4</sub> and Palmitoyl Ascorbate as a New Nano-Fenton Reactor for Amplified Tumor Oxidation Therapy

Yu Sun<sup>#,1</sup>, Zekun Wang<sup>#,1</sup>, Pu Zhang<sup>#,2</sup>, Jingyuan Wang<sup>1</sup>, Ying Chen<sup>1</sup>, Chenyang Yin<sup>1</sup>, Weiyun Wang<sup>\*,1</sup>, Cundong Fan<sup>\*,3</sup>, Dongdong Sun<sup>\*,1</sup>

<sup>1</sup> School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China

<sup>2</sup> Key Lab of Cerebral Microcirculation in Universities of Shandong; Second Affiliated Hospital, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China

<sup>#</sup>These authors contributed equally to this work.

## \*Corresponding author:

**Dongdong Sun, Weiyun Wang**, School of Life Sciences, Anhui Agricultural University, Hefei, 230036, China. Tel: +86-0551-65786703; fax: +86-0551-65786703. Email: sunddwj@126.com; weiyunw@126.com

**Cundong Fan**, Yingsheng East Road, Shandong First Medical University & Shandong Academy of Medical Sciences, Taian, Shandong, 271000, China. Tel: +86-0538-6230027; fax: +86-0538-6230027. Email: tcdfan66@163.com

## Figure S1



Figure S1: The stability of nanoparticles in PBS (pH = 7.4) was evaluated. SEM and DLS were used to detect the morphology (A) and size changes (B) of  $Fe_3O_4@mSiO_2$ -PA at 24 h, 48 h and 72 h, respectively.

Figure S2



**Figure S2: Colloidal stability of nanoparticles at 37** °C in various media. (A) Thermodynamic stability presented by size change; and (B) kinetic stability presented by transmittance change.





**Figure S3: The standard curve of PA is used for drug loading evaluation.** (A) UV-visible absorption spectra of PA. (B) Linear fit of the standard curve of PA in ethanol solution.



**Figure S4:** Cytotoxicity of Fe<sub>3</sub>O<sub>4</sub>@mSiO<sub>2</sub>-PA or Fe<sub>3</sub>O<sub>4</sub>@mSiO<sub>2</sub> towards human normal cells. HUVECs (human umbilical vein endothelial cells) as human normal cells were seeded in 96-well plate (5000 cells/well) and treated with 2.5-20  $\mu$ g/ml Fe<sub>3</sub>O<sub>4</sub>@mSiO<sub>2</sub>-PA or Fe<sub>3</sub>O<sub>4</sub>@mSiO<sub>2</sub> foe 24 h. Cell viability was detected by MTT assay.

## Figure S4





Figure S5: Fe<sub>3</sub>O<sub>4</sub>@mSiO<sub>2</sub>-PA-induced DNA damage *in vitro*. (A) Content of 8-OHdG in Fe<sub>3</sub>O<sub>4</sub>@mSiO<sub>2</sub>-PA-treated Hela cells. 8-OH-deoxyguanosine (8-OHdG), a DNA damage marker, was examined in Fe<sub>3</sub>O<sub>4</sub>@mSiO<sub>2</sub>-PA-treated cells by ELISA method. (B) A time-course of Ser139-histone expression. Cells were treated with 20  $\mu$ g/ml Fe<sub>3</sub>O<sub>4</sub>@mSiO<sub>2</sub>-PA for 0-24 h. Ser139-histone, another DNA damage marker, was examined by western blotting. All data and experiments were repeated three times.