Electronic Supplementary Material (ESI) for Biomaterials Science. This journal is © The Royal Society of Chemistry 2021

ELECTRONIC SUPPLEMENTARY MATERIAL

Single chain variable fragment fused to maltose binding protein: A modular nanocarrier platform for the targeted delivery of antitumorals

Francisco J Reche-Perez, ^{a, c} Simona Plesselova, ^{a, c} Eduardo De los Reyes-Berbel,^{b, c} Mariano Ortega-Muñoz, ^{a, c}Francisco J Lopez-Jaramillo,^{b, c} Fernando Hernandez-Mateo,^{b, c} Francisco Santoyo-Gonzalez,^{*, b, c} Rafael Salto-Gonzalez,^{a, c} Maria D Giron-Gonzalez ^{*, a, c}

^aDepartment of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, E-18071 Granada, Spain

^bDepartment of Organic Chemistry, School of Sciences, Biotechnology Institute, University of Granada, E-18071 Granada, Spain

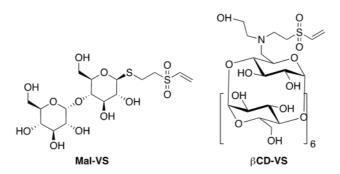
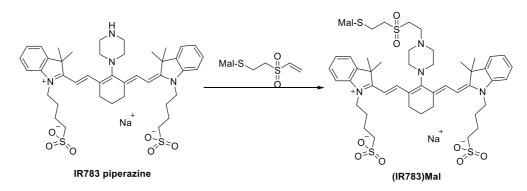
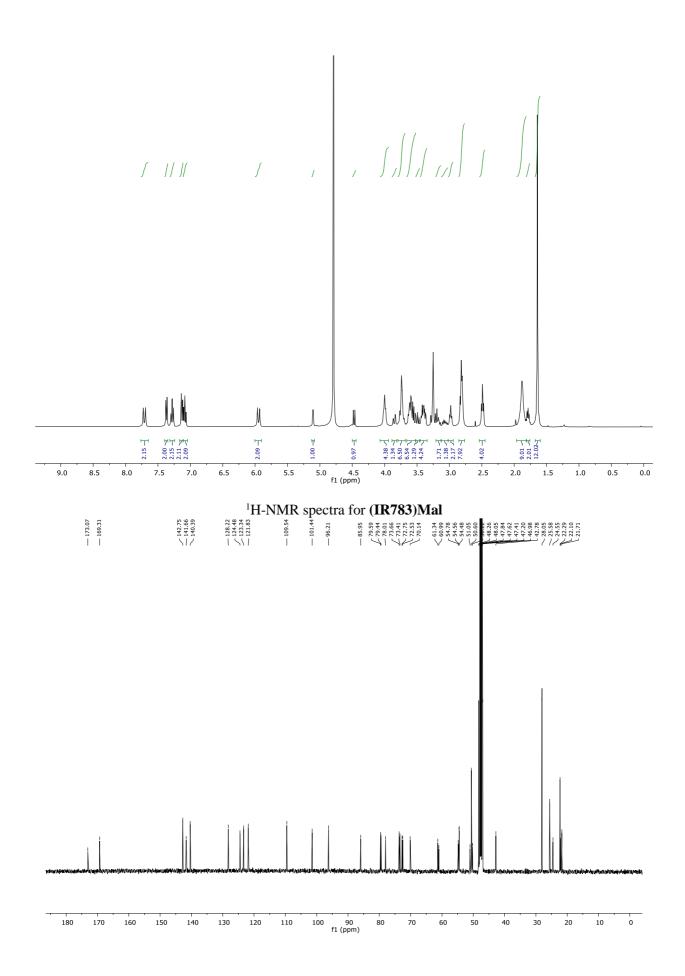

^cUnit of Excellence in Chemistry Applied to Biomedicine and the Environment of the University of Granada, Spain

Table of contents

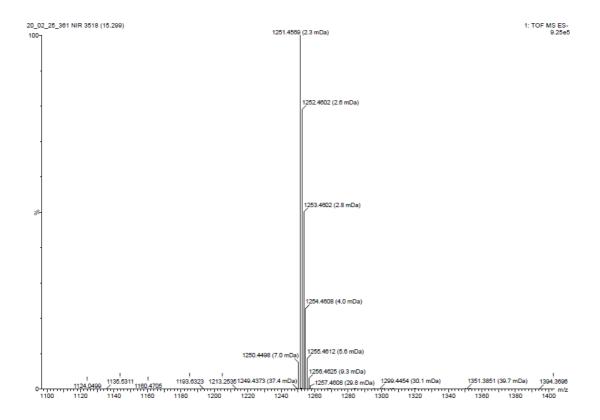
- 1. Vinyl sulfone based reagents
- 2. Chemical synthesis of maltosylated ligands
- 3. Table S1. List of oligonucleotides
- 4. Fig. S1. Expression and purification of MBP*-ScFv
- 5. Fig. S2. Flow cytometry analysis of targeted DOX delivery mediated by a MBP*-ScFv binding complex.
- 6. Fig. S3. Gene delivery capabilities of MBP* based/pDNA polyplexes
- 7. References


1. Vinyl sulfone-based reagents

The following reported vinyl sulfone-based reagents were prepared following reported procedures and used in the present work: 2-(ethenylsulfonyl)ethyl 4-O- β -D-galactopyranosyl-1-thio- β -D-glucopyranoside (**Mal-VS**),¹ and 6-deoxy-6-(2-hydroxyethyl) (vinylsulfonyl)methyl)amino- β -cyclodextrin (β **CD-VS**).²

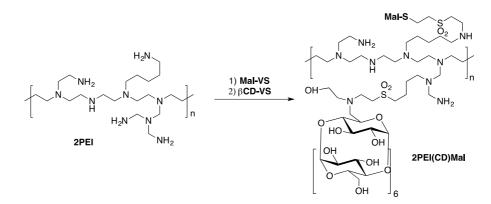

2. Chemical synthesis of maltosylated ligands

2.1. Synthesis of (IR783)Mal imaging reagent:



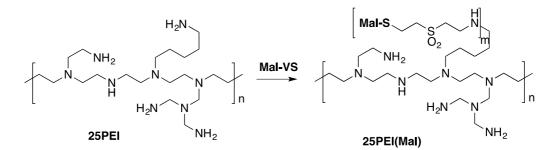
Scheme 1

To a solution of the IR-783 piperazine derivative³(47 mg, 0.059 mmol) in MeOH (5 mL), a solution of Mal-VS (27 mg, 0.057 mmol) in water (2 mL) and triethylamine (20μ l, 0.14 mmol) were successively added. The reaction mixture was kept under stirring overnight. After this time, evaporation of the solvents under reduced pressure produced a crude product that was purified by column chromatography (acetonitrile:water 8:1) yielding (IR783)Mal(35 mg, 0.027mmol, 47%):Mp: 196°C. IR: v=1550.95, 1511.03, 1454.7, 1380.15, 1347.31, 1286.69, 1256.71, 1144.05, 1127.20, 1107.12, 1089.84, 1033.81, 1018.65, 929.16, 795.08, 753.55 cm⁻¹. ¹H NMR (400 MHz, methanol-d₄): δ 7.71 (d, J = 13.4 Hz, 2H), 7.37 (d, J = 7.4 Hz, 2H), 7.28 (t, J = 7.7Hz, 2H), 7.13 (d, J = 8.0 Hz, 2H), 7.08 (t, J = 7.5 Hz, 2H), 5.95 (d, J = 13.4 Hz, 2H), 5.11 (d, J = 3.8 Hz, 1H), 4.47 (d, J = 9.7 Hz, 1H), 4.06 – 3.95 (m, 4H), 3.85 (dd, J = 12.3, 1.9 Hz, 1H), 3.80 – 3.68 (m, 6H), 3.61 (dt, J = 9.2, 4.5 Hz, 5H), 3.58 – 3.52 (m, 2H), 3.49 (t, J = 9.2 Hz, 1H), 3.40 (dq, J = 13.4, 5.1, 3.8 Hz, 4H), 3.20 – 3.14 (m, 1H), 3.07 (ddd, J = 13.8, 9.1, 6.5 Hz, 1H), 2.98 (t, J = 6.5 Hz, 2H), 2.82 (t, J = 6.9 Hz, 8H), 2.49 (t, J = 6.5 Hz, 4H), 1.87 (dq, J = 10.8, 5.2 Hz, 10H), 1.82 - 1.76 (m, 2H), 1.64 (s, 12H).¹³C NMR (101 MHz, 100 MHz) MeOD): δ 173.07, 169.31, 142.75, 141.66, 140.39, 128.22, 124.48, 123.34, 121.83, 109.54, 101.44, 96.21, 85.95, 79.59, 79.44, 78.01, 73.66, 73.41, 72.75, 72.53, 70.14, 61.34, 60.99, 54.78, 54.56, 54.48, 51.05, 50.60, 50.22, 48.26, 48.05, 47.84, 47.62, 47.41, 47.20, 46.98, 42.78, 28.05, 25.58, 24.55, 22.29, 22.10, 21.71.HR-MS (ESI⁻): m/z= found 1251.4569, calcd. for $[M-H]^- C_{58}H_{83}N_4O_{18}S_4$: 1251.4591



¹³C-NMR spectra for (IR783)Mal

HR-MS (ESI) spectra for (IR783)Mal


2.2. Synthesis of 2PEI(CD)Mal

Scheme 2

To a solution of previously lyophilized 2PEI (200mg, 0.1 mmol) in water (2.5 mL) a solution of **Mal-VS** (47.6mg, 0.1mmol) in water (2.5 mL) was added. The mixture was stirred overnight until the disappearance of **Mal-VS** was detected by TLC. Then, a solution of β **CD-VS**(518mg, 0.4mmol) in DMSO (3 mL) was added and the reaction mixture was kept at room temperature for one day. Dialysis (3.5kD membrane) was followed by lyophilization, yielding **2PEI(CD)Mal**(535mg) that was used without any additional purification.

2.3. Synthesis of 25PEI(Mal)

To a solution of 25PEI (250 mg, 0.05 mmol) in water (4 mL), a solution of **Mal-VS**(23.8mg, 0.05 mmol) in water (1 mL) was added. The mixture was stirred overnight until the disappearance of **Mal-VS** was followed by lyophilization, yielding **25PEIMal** that was used without any additional purification.

3. Table S1. List of oligonucleotides

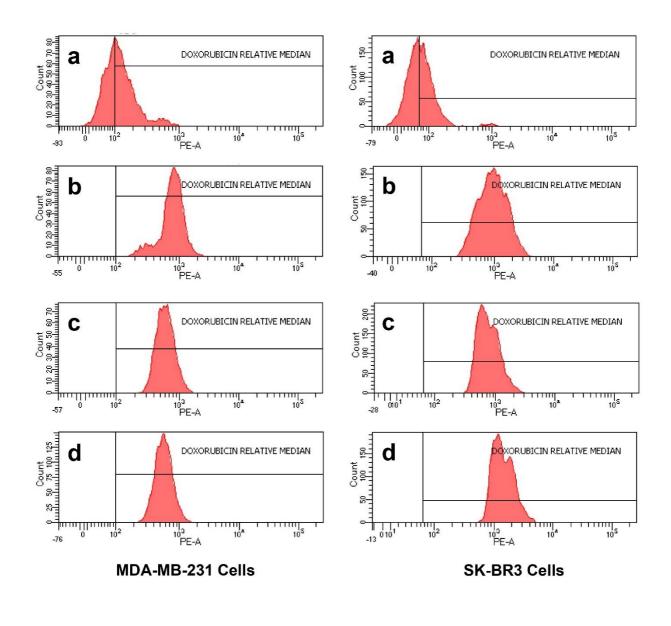
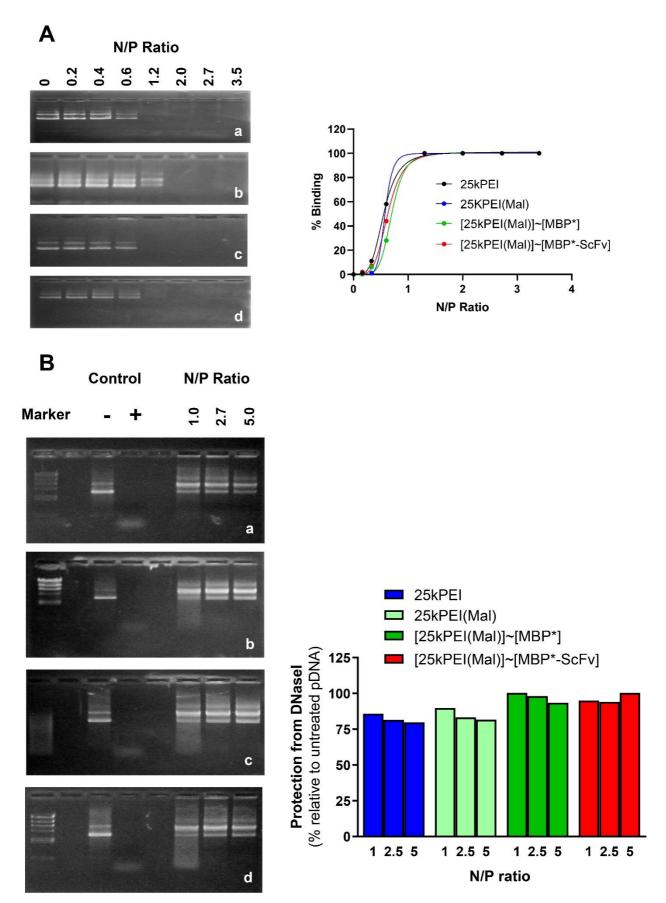

Table S1. Oligonucleolides used in this dructe			
Name	Sequence	Purpose	
ScFv-	ggatCCATGGCCCAGGTGCAGCTGGTG	Cloning ScFv in pMAL-	
Forward		TEV-His	
ScFv-	aagcTTAATGGTGGTGGTGATGATGAGATCCTCC	Cloning ScFv in pMAL-	
Reverse		TEV-His	
MBP _{I334W} -	CAGAAAGGTGAAATCATGCCGAAC <u>TGG</u> CCGCAGATG	Site directed mutagenesis	
Forward	TCCGCTTTCTGG	MBP, underlined	
		mutations	
MBP _{I334W} -	CCAGAAAGCGGACATCTGCGG <u>CCA</u> GTTCGGCATGATT	Site directed mutagenesis	
Reverse	TCACCTTTCTG	MBP, underlined	
		mutations	

Table S1. Oligonucleotides used in this article

4. Fig. S1. Expression and purification of MBP*-ScFv


Fig. S1. *Expression and purification of MBP*-ScFv.* **A.-** Novagen's RosettaTM 2 cells bearing plasmids pMALI334W-TEV-His (lanes a and c) or pMALI334W-TEV-ScFvHER2-His (lanes b and d) were grown in LB Broth medium until OD600 = 0.5 (lanes a and b) and then, cells were incubated with 0.5mM IPTG to induce the protein expression at 30°C for an additional period of 6h (lanes c and d). Samples corresponding to non-induced and induced cells were analysed by SDS-PAGE. MWM, protein molecular weight marker. Arrows mark the expected MBP* and MBP*-ScFv molecular weights. **B.**-MBP*-ScFv protein expression and purification. SDS-PAGE: MWM, protein molecular weight marker; (a) induced crude extracts corresponding of pMALI334W-TEV-ScFvHER2-His transformed bacteria, (b) soluble fraction from crude induced extract, (c) purified affinity chromatography fraction. Arrow marks the expected MBP*-ScFv molecular weight.

	PEA-Mean	
Sample	MDA-MB-231 cells	SK-BR3 cells
Control	141	89
2kPEI(DOX⊂CD)Mal	788	1026
2kPEI(DOX CD)Mal~[MBP*]	609	787
2kPEI(DOX CD)Mal~[MBP*-ScFv]	566	1477

Fig. S2. Flow cytometry analysis of targeted DOX delivery mediated by a MBP*-ScFv binding complex. Fluorescence histograms of MDA-MB-231 or SKBR3 cells were incubated for 1h in the absence (a) or presence of 1µM DOX (b), 2kPEI(DOX \subset CD)Mal (b), [2kPEI(DOX \subset CD)Mal]~[MBP*] (c), or [2kPEI(DOX \subset CD)Mal] ~[MBP*-ScFv] (d). PEA-mean value is shown.

6. Fig. S3. Gene delivery capabilities of MBP*based/pDNA polyplexes

Fig. S3. Gene delivery capabilities of MBP* derived polyplexes. (A) Gel electrophoresis shift assay at different N/P ratios. The relative percentage of binding (mean values of three independent experiments) was calculated by quantification of the intensity of the plasmid bands. (B) DNase I protection experiments: Quantification of the relative intensity (untreated pEGFP-N3 value equal to 100) of the sum of relaxed and supercoiled electrophoretic plasmid bands treated with DNase I. For both experiments (a) 25kPEI, (b) 25kPEI(Mal), (c) [25kPEI(Mal)]~[MBP*], (d) [25kPEI(Mal)]~[MBP*-ScFv]. Results are expressed as means of three independent experiments.

7. References

- 1. F. J. Lopez-Jaramillo, M. Ortega-Munoz, A. Megia-Fernandez, F. Hernandez-Mateo and F. Santoyo-Gonzalez, *Bioconjugate Chem.*, 2012, 23, 846-855.
- 2. T. del Castillo, J. Marales-Sanfrutos, F. Santoyo-Gonzalez, S. Magez, F. J. Lopez-Jaramillo and J. A. Garcia-Salcedo, *ChemMedChem*, 2014, **9**, 383-389.
- E. De los Reyes-Berbel, R. Salto-Gonzalez, M. Ortega-Munoz, F. J. Reche-Perez, A. B. Jodar-Reyes, F. Hernandez-Mateo, M. D. Giron-Gonzalez and F. Santoyo-Gonzalez, *Bioconjugate Chem.*, 2018, 29, 2561-2575.