Electronic Supplementary Information

Synthesis and Properties of an Au₆ Cluster Supported by a Mixed *N*-Heterocyclic Carbene-Thiolate ligand

Kirsi Salorinne,^a Renee W. Y. Man,^a Paul A. Lummis,^b Maryam Sabooni Asre Hazer,^c Sami Malola,^c Jacky C.-H. Yim,^a Alex J. Veinot,^b Wenxia Zhou,^b Hannu Häkkinen,^{c*} Masakazu Nambo,^{a*} and Cathleen M. Crudden^{a,b*}

^a. Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Chikusa, Nagoya, Aichi 464-8602, Japan.

^{b.} Department of Chemistry, Queen's University, Chernoff Hall, Kingston, Ontario, K7L 3N6, Canada.

^c Departments of Chemistry and Physics, Nanoscience Centre, University of Jyväskylä, 40014 Jyväskylä, Finland

Table of Contents

1. Gener	al Experimental Considerations	4
1.1	Materials	4
1.2	Instrumentation and Sample Preparation	4
1.2	Computational Methods	4
2. Synth	etic Procedures	5
3-(2-ł	promoethyl)-1-isopropylbenzimidazolium bromide (2a)	5
3-(3-ł	promopropyl)-1-isopropyl-benzimidazolium bromide (2b)	5
3-(2-(acetylthio)ethyl)-1-isopropylbenzimidazolium bromide (3a)	5
3-(3-(acetylthio)propyl)-1-isopropyl-benzimidazolium bromide (3b)	5
(3-(2-	(acetylthio)ethyl)-1-isopropylbenzimidazole)gold bromide (4a)	6
3-(2-(acetylthio)propyl)-1-isopropylbenzimidazole)gold bromide (4b)	6
[(NH	$C-S_{4}Au_{6}]Br_{2}(5a)$	7
React	ion of compound 4b with HBr	7
3. Exper	imental data	
3.1 N	IMR Spectroscopy	
3.1.1	Figure S1: ¹ H NMR spectrum (400 MHz, CDCl ₃) of 2a.	8
3.1.2	Figure S2: ¹³ C{ ¹ H} NMR spectrum (101 MHz, CDCl ₃) of 2a	9
3.1.3	Figure S3: ¹ H NMR spectrum (600 MHz, CDCl ₃) of 2b	
3.1.4	Figure S4: ¹³ C{ ¹ H} NMR spectrum (151 MHz, CDCl ₃) of 2b	
3.1.5	Figure S5: ¹ H NMR spectrum (400 MHz, CDCl ₃) of 3a.	
3.1.6	Figure S6: ¹³ C{ ¹ H} NMR spectrum (101 MHz, CDCl ₃) of 3a	
3.1.7	Figure S7: ¹ H NMR spectrum (600 MHz, CDCl ₃) of 3b	14
3.1.8	Figure S8: ¹³ C{ ¹ H} NMR spectrum (151 MHz, CDCl ₃) of 3b	
3.1.9	Figure S9: ¹ H NMR spectrum (400 MHz, CDCl ₃) of 4a.	
3.1.10	Figure S10: ¹³ C{ ¹ H} NMR spectrum (101 MHz, CDCl ₃) of 4a	

2.1	3.1.12 Figure S12: ${}^{13}C$ (1H) NMR spectrum (151 MHz CDCl ₂) of 4b	
3.1. 2.1	Figure S12: ${}^{\circ}C{}^{\circ}H{}$ NMR spectrum (151 MHz, CDCl ₃) of 40	
5.1. 2.1	Figure S15: If NMR spectrum (400 MHz, CD_3OD) of 5a.	20
3.1. 2.2	IV visible Spectroscopy	
3.2 2.2	UV-VISIOR Spectroscopy	
3.2.	Mass Spectroscopy	
3.5	Triass Specific ESLMS of 22	23
3.3	Figure S17: ESI-MS of 2b $rac{1}{2}$	23
3.3	Figure S18: FSI-MS of 3a	23
33	4 Figure S19: ESI-MS of 3b	
33	5 Figure S20: ESI-MS of $4a$	
33	$5 \qquad \text{Figure S20: ESI-MS of 4b}$	25
3.3	7 Figure S22: ESI-MS of 5a	25
3.4	X-ray Crystallography	27
3.4.	Table S1: X-ray data for 4a	
3.4.	Table S2: Atomic coordinates (× 10 ⁴) and equivalent isotropic displacement $(Å^2 \times 10^3)$ for 4a	parameters
34	Table S3: Bond lengths [Å] and angles [°] for 4a	29
2.4	Table S4: Anisotronic displacement parameters $(^{1}2 \times 10^{3})$ for 4a	22
5.4.4 2.4	Table S4. Anisotropic displacement parameters $(X^2 \times 10^2)$ for 4a	noromotora
5.4.	$(Å^2 \times 10^3)$ for 4a	
3.4.	5 Table S6: X-ray data for 5a	
3.4.	Table S7: Atomic coordinates (\times 10 ⁴) and equivalent isotropic displacement pa	arameters35
3.4.	8 Table S8: Bond lengths [Å] and angles [°] for 5a	
3.4.	9 Table S9: Anisotropic displacement parameters	
3.4.	10 Table S10: Hydrogen coordinates	
3.4.	11 Table S11: Torsion angles [°] for 5a	40
3.4.	12 Table S12: Hydrogen bonds for 5a [Å and °].	41
3.5	Cyclic voltammetry	
3.5.	1 Figure S23: Cyclic voltammogram of 5a	
4. Con	nputational data	43
4.1	Computational analysis of cluster 5a.	43
4.1.	Figure S24: Relaxed structure of 5a calculated using PBE functional	
4.1.	2 Figure S25: Gold-projected density of states for 5a.	
4.1.	Figure S26: A few frontier orbitals for 5a.	
		44
4.1.	Table S13: Shortest Au-Au distances in 5a.	45

2	4.1.5	Figure S27: Dipole transition contribution maps (DTCM) analysis for 5a – Principa of moments of inertia.	l axes
4	4.1.6	Figure S28: DTCM for peak at $E = 3.779 \text{ eV}$	46
2	4.1.7	Figure S29: DTCM for peak at $E = 4.413$ eV	46
4	4.1.8	Figure S30: DTCM for peak at $E = 4.570 \text{ eV}$.	47
5.	Refere	ences	47

1. General Experimental Considerations

1.1 Materials

Unless otherwise noted, all materials including dry solvents were obtained from commercial suppliers and used without further purification. 1-Isopropylimidazole and chloro(dimethylsulfide)gold(I) were prepared according to a literature procedure.¹

1.2 Instrumentation and Sample Preparation

¹H and ¹³C NMR spectra were measured with JEOL ECS 400 MHz, JEOL JNM-ECA600II (600 MHz), or Bruker Avance-300 spectrometers and chemical shifts were calibrated to the residual proton or ¹³C carbon resonance of the deuterated solvent, which was referenced to tetramethylsilane. All NMR data processing was carried out using either Topspin v.4 or Mestrenova v.12. HRMS-ESI spectra were measured using a Thermo Scientific Exactive mass spectrometer. UV-Vis spectra were recorded with Agilent Cary 60 UV-vis spectrometer using 1 cm quartz cuvettes. Single crystal X-ray diffraction crystals of appropriate quality for X-ray diffraction studies covered with a thin layer of hydrocarbon oil (Paratone-N). A suitable crystal was then selected, attached to a glass fibre or a microsampler, and quickly placed in a low-temperature stream of nitrogen.² Data for 4a were collected at Queen's University using a Bruker AXS D8 Venture Duo diffractometer using Mo K_{α} radiation ($\lambda = 0.71073$ Å), with the crystal cooled to -100 °C. Data for 4a were solved using intrinsic phasing (SHELXT)³ and refined using SHELXL-2014.⁴ Data for 5a were collected at Nagoya University on a Rigaku PILATUS diffractometer using Mo K_{α} radiation ($\lambda = 0.71075$ Å) at -150 °C, and refined using the same programs and methods. The assignment of hydrogen atom positions was based on the sp² or sp³ hybridization geometries of their attached carbon atoms and were given thermal parameters 20% greater than those of their parent atoms. Cyclic Voltammetry was performed using a CH Instruments electrochemical analyzer and referenced to Ag/AgCl.

1.2 Computational Methods

All calculations have been done by using density-functional theory (DFT) as implemented in the realspace code-package GPAW⁵ (Grid-based projector-augmented wave method). Scalar-relativistic corrections for gold are included in GPAW setups. Two exchange-correlation-functionals were used, the Perdew–Burke–Ernzerhof (PBE)⁶ and GLLB-SC.⁷ The experimental crystal structure was used as a starting point for the calculations. The initial geometry was first relaxed with PBE, 0.2 Å grid spacing and 0.05 eV/Å convergence criterion for the maximum forces acting on atoms in cluster. After relaxation a ground state calculation was done with GLLB-SC functional and 0.25 Å grid spacing, which was used for all further analysis. The electronic density of states was analysed via projections to atomic Au(s), Au(p) and Au(d) symmetries. Optical absorption spectra were calculated by using linearresponse time-dependent density functional theory Ir-TDDFT,⁸ PBE functional in the kernel but with GLLB-SC wave functions and energies. Finally, dipole transition contribution maps (DTCM) were solved for analyzing the peaks in the spectrum by using time-dependent density functional perturbation theory TD-DFPT.⁹

2. Synthetic Procedures

3-(2-bromoethyl)-1-isopropylbenzimidazolium bromide (2a).

A solution of 1-isopropyl-benzimidazole (1.0 g, 6.6 mmol) and 1,2-dibromoethane (5.4 mL, 62.4 mmol) in acetonitrile (30 mL) was refluxed for 24 hours at 90 °C, and then cooled to room temperature. The white precipitate that formed was removed by filtration through a pad of Celite. The filtrate was collected and solvent was removed by rotary evaporation. Product was purified by silica column chromatography with CH₂Cl₂-MeOH (9:1) affording a sticky white solid after concentration of appropriate fractions and drying in vacuum. Yield 1.3 g (56%). ¹H NMR (400 MHz, CDCl₃) δ

11.21 (s, 1H), 7.90 (m, 1H), 7.76 (m, 1H), 7.65 (m, 2H), 5.24 (t, J = 5.6 Hz, 2H), 4.99 (sept, J = 6.8 Hz, 1H), 4.08 (t, J = 6.0 Hz, 2H), 1.83 (d, J = 6.8 Hz, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 141.7, 132.1, 130.4, 127.5, 127.3, 113.9, 113.5, 52.1, 48.7, 30.4, 22.4 ppm. HRMS (ESI+) m/z calculated for C₁₂H₁₆Br₂N₂ [M]⁺: 267.0491, found: 267.0486. EA: (Calculated) C 41.41, H 4.63, N 8.05. (Observed) C 41.09, H 4.56, N 8.07.

3-(3-bromopropyl)-1-isopropyl-benzimidazolium bromide (2b).

A solution of 1-isopropyl-benzimidazole (0.25 g, 1.6 mmol) and 1,3dibromopropane (2.0 mL, 19.6 mmol) was heated at 90 °C for 16 hours at ambient conditions. White precipitate that formed was removed by filtration through a pad of Celite. The filtrate was collected and solvent removed by rotary evaporation. The product was purified by silica column chromatography with CH₂Cl₂-MeOH (9:1) to afford a white sticky solid after concentration of appropriate fractions and drying in vacuo. Yield 0.69 (61%). ¹H NMR (600 MHz, CDCl₃) δ 11.24 (s, 1H),

7.85 (m, 1H), 7.78 (m, 1H), 7.63 (m, 2H), 4.99 (sept, J = 6.8 Hz, 1H), 4.91 (t, J = 7.2 Hz, 2H), 3.56 (t, J = 6.0 Hz, 2H), 2.67 (m, 2H), 1.79 (d, J = 6.7 Hz, 6H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 131.77, 130.51, 127.42, 127.24, 113.64, 113.29, 77.37, 76.95, 52.00, 45.88, 32.32, 29.92, 22.33 ppm. HRMS (ESI+) *m/z* calculated for C₁₃H₁₈BrN₂⁺ [M]⁺: 281.0648, found: 281.0637. EA: (Calculated) C 43.12, H 5.01, N 7.74. (Observed) C 43.10, H 4.97, N 7.40.

3-(2-(acetylthio)ethyl)-1-isopropylbenzimidazolium bromide (3a).

A mixture of **2a** (0.55 g, 1.6 mmol) and potassium thioacetate (0.22 g, 1.9 mmol) was suspended in acetonitrile (20 mL) and stirred overnight at room temperature. The resulting yellow suspension was filtered through a pad of Celite and the solvent was removed by rotary evaporation affording the crude product as viscous vellow oil. The crude product was dissolved in a small amount of CH₂Cl₂ and triturated three times with diethyl ether at cold temperature, which afforded

the product as a pale orange solid. Yield 0.43 g (80 %). ¹H NMR (400 MHz, CDCl₃) δ 11.14 (s, 1H), 7.98 (m, 1H), 7.75 (m, 1H), 7.57 (m, 2H), 4.96 (sept, J = 4.8 Hz, 1H), 4.80 (t, J = 4.8 Hz, 2H), 3.45 (t, J = 4.4 Hz, 2H), 2.19 (s, 3H), 1.72 (d, J = 4.4 Hz, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 195.5, 141.5, 131.7, 130.3, 127.2, 127.0, 113.45, 113.42, 51.7, 46.2, 30.4, 28.5, 22.1 ppm. HRMS (ESI+) m/z calculated for C₁₄H₁₉N₂OS [M]⁺: 263.1213, found: 263.1209. EA: (Calculated) C 48.98, H 5.58, N 8.16. (Observed) C 49.13, H 5.62, N 8.08.

3-(3-(acetylthio)propyl)-1-isopropyl-benzimidazolium bromide (3b).

A mixture of **2b** (0.69 g, 1.91 mmol) and potassium thioacetate (0.26 g, 1.9 mmol) was suspended in acetonitrile (25 mL) and stirred overnight at room temperature. The resulting white suspension was filtered through a pad of Celite, and the solvent was removed by rotary evaporation, affording the crude product as a brown viscous oil. The crude product was dissolved in

small amount of CH₂Cl₂ and triturated three times with diethyl ether at cold temperature, which afforded the product as a pale orange solid. Yield 0.63 g (96%). ¹H NMR (600 MHz, CDCl₃) δ 11.13 (s, 1H), 7.78 (m, 1H), 7.74 (m, 1H), 7.60 (m, 2H), 4.99 (sept, J = 6.8 Hz, 1H), 4.76 (t, J = 7.2 Hz, 2H), 4.76 (t, J = 7.2 Hz, 2H), 2.93 (t, J = 7.1 Hz, 2H), 2.22 (s, 3H), 1.76 (d, J = 6.8 Hz, 6H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 207.04, 195.54, 131.58, 130.58, 127.25, 127.12, 113.65, 113.24, 51.86, 46.16, 30.89, 30.64, 29.44, 25.64, 22.25 ppm. HRMS (ESI+) *m/z* calculated for C₁₅H₂₁N₂OS⁺ [M]⁺: 277.1369, found: 277.1368. EA: (Calculated) C 50.42, H 5.92, N 7.84. (Observed) C 50.18, H 6.01, N 7.63.

(3-(2-(acetylthio)ethyl)-1-isopropylbenzimidazole)gold bromide (4a).

A mixture of **3a** (0.20 g, 0.6 mmol), Au(SMe₂)Cl (0.18 g, 0.6 mmol) and K₂CO₃ (0.26 g, 1.9 mmol) was suspended in acetone and heated at 60 °C for 2 hours. After cooling to room temperature, the reaction mixture was filtered through a pad of Celite. The filtrate was collected and the solvent was removed by rotary evaporation, which afforded the product as a pale orange crystalline solid. Yield 0.29 g (94 %). ¹H NMR (400 MHz, CDCl₃) δ 7.76 (d, J = 7.2 Hz, 1H), 7.62 (d, J = 6.0 Hz, 1H), 7.41 (quint-d, J = 6.4 and J = 0.8

Hz, 2H), 5.41 (sept, J = 6.8 Hz, 1H), 4.58 (t, J = 7.6 Hz, 2H), 3.30 (t, J = 7.6 Hz, 2H), 2.35 (s, 3H), 1.71 (d, J = 7.6 Hz, 6H) ppm. ¹³C NMR (100 MHz, CDCl₃) δ 195.5, 180.0, 133.6, 131.6, 124.8, 124.4, 112.9, 112.1, 54.0, 47.7, 30.7, 28.5, 21.9 ppm. HRMS (ESI+) m/z calculated for C₁₄H₁₈AuON₂SBrNa [M+Na]⁺: 560.9881, found: 560.9879. EA: (Calculated) C 31.18, H 3.36, N 5.20. (Observed) C 31.35, H 3.42, N 5.08.

3-(2-(acetylthio)propyl)-1-isopropylbenzimidazole)gold bromide (4b).

A mixture of **3b** (0.28 g, 0.79 mmol), Au(SMe₂)Cl (0.24 g, 0.80 mmol) and K₂CO₃ (0.33 g, 2.4 mmol) was suspended in acetone and heated at 60 °C for 2 hours. After cooling to room temperature, the reaction mixture was filtered through a pad of Celite. The filtrate was collected and volatiles were removed by rotary evaporation. The crude product was purified by silica column chromatography with CH₂Cl₂-MeOH (9:1) which afforded the product as a pale beige solid after concentration of appropriate fractions. Yield 0.28 g (66%). ¹H NMR (600 MHz, CDCl₃) δ 7.64 (m, 1H), 7.49 (m,

1H), 7.41 (m, 2H), 5.45 (sept, J = 6.8 Hz, 1H), 4.54 (t, J = 7.3 Hz, 2H), 2.93 (t, J = 6.9 Hz, 2H), 2.34 (s, 3H), 2.27 – 2.20 (m, 2H), 1.73 (d, J = 7.0 Hz, 6H) ppm. ¹³C NMR (151 MHz, CDCl₃) δ 195.46, 180.48, 133.69, 131.80, 124.66, 124.37, 113.11, 111.71, 54.15, 47.50, 30.89, 29.84, 26.11, 21.94 ppm. HRMS (ESI+) *m*/*z* calculated for C₁₅H₂₀AuBrN₂OSNa⁺ [M+Na]⁺: 575.0043, found: 575.0048. EA: (Calculated) C 32.56, H 3.64, N 5.06. (Observed) C 33.45, H 3.89, N 4.86.

To a degassed mixture of 3 (0.16 g, 0.30 2+ mmol) in methanol (8 mL) was added degassed 2 M aqueous HBr solution (3 mL, 6 mmol) with stirring. The reaction mixture was stirred at 65 °C under argon overnight, which resulted in formation of white precipitate. Most of the methanol was removed by rotary evaporation and the aqueous solution was diluted with H₂O and extracted two times with CH₂Cl₂. The combined organic layers were washed with brine and dried with anhydrous Na₂SO₄. The solvent was removed by rotary evaporation and the yellowish solid was washed with a mixture of CHCl₃-CCl₄ to remove any impurities. Yield 0.10 g (63% based on NHC, 94% based on Au) as a white powdery solid. ¹H NMR (400 MHz, CD₃OD) δ 7.91 (d, J = 4.8 Hz, 1H), 7.62 (d, J = 5.6 Hz,

1H), 7.43 (quint, J = 4.4 Hz, 2H), 5.55 (sept, J = 4.8 Hz, 1H), 5.14 (dd, J = 3.6 and J = 6.0 Hz, 1H, -NC*H*H-), 5.03 (dd, J = 6.8 and J = 2.8 Hz, 1H, -NC*H*H-), 3.78 (dd, J = 3.6 and J = 6.0 Hz, 1H, -C*H*HSH), 3.29 (dd, J = 6.8 and J = 2.8 Hz, 1H, -C*H*HSH), 1.95 (d, J = 4.4 Hz, 3H), 1.77 (d, J = 4.8 Hz, 3H) ppm. ¹³C NMR (100 MHz, CH₃OD) δ 182.4, 134.8, 133.2, 126.1, 126.0, 115.2, 113.2, 56.7, 55.8, 32.6, 22.1, 22.0 ppm. HRMS (ESI+) *m*/*z* calculated for C₄₈H₆₀Au₆N₈S₄ [M-2Br]²⁺: 1029.0903, found: 1029.0910. EA: (Calculated) C 25.98, H 2.73, N 5.05, S 5.78. (Observed) C 25.87, H 2.84, N 5.86.

Reaction of compound 4b with HBr.

To a degassed mixture of **4b** (0.16 g, 0.29 mmol) in methanol (8 mL) was added a degassed 2 M aqueous HBr solution (3 mL, 6 mmol) with stirring. The reaction mixture was stirred at 65 °C under argon overnight, which resulted in formation of insoluble white precipitate.

3. Experimental data

3.1 NMR Spectroscopy

3.1.1 Figure S1: ¹H NMR spectrum (400 MHz, CDCl₃) of 2a.

3.1.2 Figure S2: ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of 2a.

3.1.7

3.1.8

3.1.9 Figure S9: ¹H NMR spectrum (400 MHz, CDCl₃) of 4a.

3.1.10 Figure S10: ¹³C{¹H} NMR spectrum (101 MHz, CDCl₃) of 4a.

3.1.13 Figure S13: ¹H NMR spectrum (400 MHz, CD₃OD) of 5a.

- 3.2 UV-visible Spectroscopy
- 3.2.1 Figure S15: UV-Vis Spectrum of 5a in MeOH.

3.3 Mass Spectroscopy

3.3.1 Figure S16: ESI-MS of 2a

3.3.3 Figure S18: ESI-MS of 3a

3.3.5 Figure S20: ESI-MS of 4a

3.3.7 Figure S22: ESI-MS of 5a

3.4 X-ray Crystallography

3.4.1 Table S1: X-ray data for 4a. Identification code Empirical formula Formula weight Temperature Wavelength Crystal system Space group Unit cell dimensions Volume Ζ Density (calculated) Absorption coefficient F(000) Crystal size Theta range for data collection Index ranges Reflections collected Independent reflections Completeness to theta = 25.242° Absorption correction Max. and min. transmission Refinement method Data / restraints / parameters Goodness-of-fit on F² Final R indices [I>2sigma(I)] R indices (all data) Extinction coefficient Largest diff. peak and hole

4a C14 H18 Au Br N2 O S 539.24 180(2) K 0.71073 Å Triclinic P-1 a = 9.2685(3) Å $\alpha = 66.9380(10)^{\circ}$. b = 9.2937(3) Å $\beta = 78.8370(10)^{\circ}$. c = 10.4915(3) Å $\gamma = 79.3620(10)^{\circ}$. 809.82(4) Å³ 2 2.211 Mg/m³ 11.676 mm⁻¹ 508 0.151 x 0.122 x 0.102 mm³ 2.887 to 30.539°. -13<=h<=13, -13<=k<=13, -14<=l<=14 43744 4943 [R(int) = 0.0433] 99.6 % Semi-empirical from equivalents 0.7461 and 0.4532 Full-matrix least-squares on F² 4943 / 0 / 184 1.107 R1 = 0.0193, wR2 = 0.0488R1 = 0.0215, wR2 = 0.0497n/a 0.984 and -1.543 e.Å-3

3.4.2 Table S2: Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters (Å² × 10³) for 4a.

	Х	у	Z	U(eq)
Au(1)	6389(1)	3828(1)	1012(1)	22(1)
Br(1)	7410(1)	1945(1)	-63(1)	31(1)
S(1)	1070(1)	2434(1)	4096(1)	30(1)
O(1)	1116(3)	3383(3)	6137(2)	40(1)
N(1)	4441(2)	5114(3)	3019(2)	21(1)
N(2)	6123(2)	6662(3)	1831(2)	22(1)
C(1)	5615(3)	5320(3)	1999(3)	21(1)
C(2)	4184(3)	6333(3)	3515(3)	22(1)
C(3)	3150(3)	6623(4)	4562(3)	27(1)
C(4)	3198(3)	7995(4)	4775(3)	30(1)
C(5)	4227(3)	9033(4)	3963(3)	29(1)
C(6)	5279(3)	8735(3)	2935(3)	26(1)
C(7)	5242(3)	7346(3)	2733(3)	21(1)
C(8)	3614(3)	3758(3)	3591(3)	24(1)
C(9)	2036(3)	4159(3)	3229(3)	26(1)
C(10)	793(3)	2363(4)	5844(3)	30(1)
C(11)	143(4)	921(4)	6901(4)	40(1)
C(12)	7387(3)	7386(3)	820(3)	26(1)
C(13)	8763(3)	6214(5)	867(4)	40(1)
C(14)	6923(4)	8217(5)	-622(3)	41(1)

U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Au(1)-C(1)	1.994(3)
Au(1)-Br(1)	2.3986(3)
S(1)-C(10)	1.779(3)
S(1)-C(9)	1.809(3)
O(1)-C(10)	1.205(4)
N(1)-C(1)	1.354(3)
N(1)-C(2)	1.387(3)
N(1)-C(8)	1.456(3)
N(2)-C(1)	1.349(3)
N(2)-C(7)	1.396(3)
N(2)-C(12)	1.484(3)
C(2)-C(3)	1.388(4)
C(2)-C(7)	1.395(4)
C(3)-C(4)	1.388(4)
C(3)-H(3)	0.9500
C(4)-C(5)	1.396(4)
C(4)-H(4)	0.9500
C(5)-C(6)	1.385(4)
C(5)-H(5)	0.9500
C(6)-C(7)	1.395(4)
C(6)-H(6)	0.9500
C(8)-C(9)	1.524(4)
C(8)-H(8A)	0.9900
C(8)-H(8B)	0.9900
C(9)-H(9A)	0.9900
C(9)-H(9B)	0.9900
C(10)-C(11)	1.505(4)
C(11)-H(11A)	0.9800
C(11)-H(11B)	0.9800
С(11)-Н(11С)	0.9800
C(12)-C(13)	1.511(4)
C(12)-C(14)	1.512(4)
C(12)-H(12)	1.0000
C(13)-H(13A)	0.9800
C(13)-H(13B)	0.9800
C(13)-H(13C)	0.9800
C(14)-H(14A)	0.9800

3.4.3 Table S3: Bond lengths [Å] and angles [°] for 4a.

C(14)-H(14B)	0.9800
C(14)-H(14C)	0.9800
C(1)-Au(1)-Br(1)	176.54(7)
C(10)-S(1)-C(9)	99.89(14)
C(1)-N(1)-C(2)	110.5(2)
C(1)-N(1)-C(8)	125.3(2)
C(2)-N(1)-C(8)	124.1(2)
C(1)-N(2)-C(7)	109.9(2)
C(1)-N(2)-C(12)	127.0(2)
C(7)-N(2)-C(12)	123.1(2)
N(2)-C(1)-N(1)	107.0(2)
N(2)-C(1)-Au(1)	128.99(19)
N(1)-C(1)-Au(1)	123.96(19)
N(1)-C(2)-C(3)	132.0(3)
N(1)-C(2)-C(7)	106.0(2)
C(3)-C(2)-C(7)	122.0(2)
C(4)-C(3)-C(2)	116.6(3)
C(4)-C(3)-H(3)	121.7
C(2)-C(3)-H(3)	121.7
C(3)-C(4)-C(5)	121.4(3)
C(3)-C(4)-H(4)	119.3
C(5)-C(4)-H(4)	119.3
C(6)-C(5)-C(4)	122.3(3)
C(6)-C(5)-H(5)	118.9
C(4)-C(5)-H(5)	118.9
C(5)-C(6)-C(7)	116.3(3)
C(5)-C(6)-H(6)	121.8
C(7)-C(6)-H(6)	121.8
C(2)-C(7)-C(6)	121.4(2)
C(2)-C(7)-N(2)	106.4(2)
C(6)-C(7)-N(2)	132.1(3)
N(1)-C(8)-C(9)	113.1(2)
N(1)-C(8)-H(8A)	109.0
C(9)-C(8)-H(8A)	109.0
N(1)-C(8)-H(8B)	109.0
C(9)-C(8)-H(8B)	109.0
H(8A)-C(8)-H(8B)	107.8

C(8)-C(9)-S(1)	109.45(19)
C(8)-C(9)-H(9A)	109.8
S(1)-C(9)-H(9A)	109.8
C(8)-C(9)-H(9B)	109.8
S(1)-C(9)-H(9B)	109.8
H(9A)-C(9)-H(9B)	108.2
O(1)-C(10)-C(11)	123.9(3)
O(1)-C(10)-S(1)	122.1(2)
C(11)-C(10)-S(1)	114.0(2)
C(10)-C(11)-H(11A)	109.5
C(10)-C(11)-H(11B)	109.5
H(11A)-C(11)-H(11B)	109.5
C(10)-C(11)-H(11C)	109.5
H(11A)-C(11)-H(11C)	109.5
H(11B)-C(11)-H(11C)	109.5
N(2)-C(12)-C(13)	112.2(2)
N(2)-C(12)-C(14)	109.8(2)
C(13)-C(12)-C(14)	113.6(3)
N(2)-C(12)-H(12)	107.0
С(13)-С(12)-Н(12)	107.0
С(14)-С(12)-Н(12)	107.0
С(12)-С(13)-Н(13А)	109.5
С(12)-С(13)-Н(13В)	109.5
H(13A)-C(13)-H(13B)	109.5
С(12)-С(13)-Н(13С)	109.5
H(13A)-C(13)-H(13C)	109.5
H(13B)-C(13)-H(13C)	109.5
C(12)-C(14)-H(14A)	109.5
C(12)-C(14)-H(14B)	109.5
H(14A)-C(14)-H(14B)	109.5
C(12)-C(14)-H(14C)	109.5
H(14A)-C(14)-H(14C)	109.5
H(14B)-C(14)-H(14C)	109.5

Symmetry transformations used to generate equivalent atoms:

3.4.4 Table S4: Anisotropic displacement parameters ($Å^2 \times 10^3$) for 4a.

The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [h² a^{*2}U¹¹ + ... + 2 h k a^{*} b^{*} U¹²]

	U ¹¹	U ²²	U ³³	U ²³	U ¹³	U ¹²
Au(1)	21(1)	22(1)	23(1)	-10(1)	1(1)	-4(1)
Br(1)	33(1)	28(1)	34(1)	-16(1)	4(1)	-5(1)
S(1)	29(1)	33(1)	32(1)	-14(1)	3(1)	-12(1)
O(1)	42(1)	45(1)	38(1)	-23(1)	7(1)	-14(1)
N(1)	20(1)	20(1)	22(1)	-8(1)	-1(1)	-1(1)
N(2)	20(1)	23(1)	22(1)	-9(1)	-1(1)	-2(1)
C(1)	21(1)	20(1)	20(1)	-6(1)	-3(1)	-2(1)
C(2)	22(1)	21(1)	22(1)	-8(1)	-5(1)	2(1)
C(3)	22(1)	31(1)	27(1)	-13(1)	0(1)	1(1)
C(4)	30(1)	33(2)	29(1)	-18(1)	-3(1)	5(1)
C(5)	31(1)	26(1)	34(1)	-16(1)	-8(1)	4(1)
C(6)	28(1)	22(1)	28(1)	-9(1)	-7(1)	-1(1)
C(7)	22(1)	22(1)	20(1)	-8(1)	-4(1)	1(1)
C(8)	21(1)	21(1)	27(1)	-6(1)	0(1)	-2(1)
C(9)	23(1)	25(1)	27(1)	-7(1)	-1(1)	-5(1)
C(10)	23(1)	32(1)	30(1)	-10(1)	2(1)	-3(1)
C(11)	38(2)	38(2)	36(2)	-5(1)	2(1)	-11(1)
C(12)	24(1)	31(1)	28(1)	-14(1)	4(1)	-11(1)
C(13)	21(1)	51(2)	56(2)	-30(2)	4(1)	-8(1)
C(14)	42(2)	50(2)	29(2)	-7(1)	2(1)	-19(2)

Х	у	Z	U(eq)
2445	5918	5106	32
2517	8232	5489	36
4205	9977	4121	35
5988	9438	2396	31
3578	3312	4621	29
4145	2940	3229	29
2058	4517	2205	31
1512	5023	3534	31
-308	434	6423	60
-614	1221	7575	60
928	167	7394	60
7625	8212	1108	32
8644	5501	421	60
8916	5603	1842	60
9622	6778	369	60
7731	8773	-1268	62
6043	8976	-585	62
6692	7442	-948	62
	x 2445 2517 4205 5988 3578 4145 2058 1512 -308 -614 928 7625 8644 8916 9622 7731 6043 6692	x y 2445 5918 2517 8232 4205 9977 5988 9438 3578 3312 4145 2940 2058 4517 1512 5023 -308 434 -614 1221 928 167 7625 8212 8644 5501 8916 5603 9622 6778 7731 8773 6043 8976 6692 7442	x y z 2445 5918 5106 2517 8232 5489 4205 9977 4121 5988 9438 2396 3578 3312 4621 4145 2940 3229 2058 4517 2205 1512 5023 3534 -308 434 6423 -614 1221 7575 928 167 7394 7625 8212 1108 8644 5501 421 8916 5603 1842 9622 6778 369 7731 8773 -1268 6043 8976 -585 6692 7442 -948

3.4.5 Table S5: Anisotropic Hydrogen coordinates (× 10⁴) and isotropic displacement parameters ($Å^2 \times 10^3$) for 4a.

3.4.6 Table S6: X-ray data for 5a

Identification code	5a
Empirical formula	$C_{50} H_{60} Au_6 F_{12} N_8 O_2 P_2 S_4$
Formula weight	2405.04
Temperature	123(2) K
Wavelength	0.71075 Å
Crystal system	Orthorhombic
Space group	F d d d :2
Unit cell dimensions	$a = 12.360(4) \text{ Å} \alpha = 90^{\circ}.$
	$b = 29.522(9) \text{ Å}\beta = 90^{\circ}.$
	$c = 35.0152(10) \text{ Å} \qquad \gamma = 90^{\circ}.$
Volume	12777(6) Å ³
Z	8
Density (calculated)	2.501 Mg/m ³
Absorption coefficient	13.988 mm ⁻¹
F(000)	8864
Crystal size	0.150 x 0.150 x 0.150 mm ³
Theta range for data collection	3.170 to 24.997°.
Index ranges	-14<=h<=14, -35<=k<=35, -41<=l<=41
Reflections collected	37240
Independent reflections	2815 [R(int) = 0.0662]
Completeness to theta = 24.997°	99.8 %
Absorption correction	Semi-empirical from equivalents
Max. and min. transmission	1.000 and 0.446
Refinement method	Full-matrix least-squares on F ²
Data / restraints / parameters	2815 / 83 / 238
Goodness-of-fit on F ²	0.992
Final R indices [I>2sigma(I)]	R1 = 0.0178, $wR2 = 0.0413$
R indices (all data)	R1 = 0.0227, $wR2 = 0.0420$
Extinction coefficient	n/a
Largest diff. peak and hole	0.907 and -1.005 e.Å ⁻³

	Х	у	Z	U(eq)
$\overline{Au(1)}$	6183(1)	1859(1)	714(1)	16(1)
Au(2)	8124(1)	1250	1250	17(1)
S(1)	8164(1)	1785(1)	1721(1)	19(1)
C(1)	7760(3)	1966(1)	607(1)	14(1)
N(1)	8412(2)	2243(1)	810(1)	15(1)
C(2)	9415(3)	2281(1)	633(1)	19(1)
C(3)	9366(3)	2010(1)	304(1)	18(1)
N(2)	8327(2)	1819(1)	302(1)	15(1)
C(4)	8112(3)	2490(1)	1154(1)	18(1)
C(5)	8656(3)	2318(1)	1515(1)	18(1)
C(6)	10319(3)	2542(1)	724(1)	23(1)
C(7)	11179(3)	2510(2)	477(1)	32(1)
C(8)	11143(3)	2235(2)	151(1)	33(1)
C(9)	10245(3)	1984(1)	56(1)	27(1)
C(10)	7818(3)	1547(1)	-5(1)	22(1)
C(11)	7404(4)	1858(2)	-316(1)	39(1)
C(12)	8563(4)	1181(2)	-162(1)	33(1)
P(1)	8750	3750	1548(1)	22(1)
F(1)	8750	3750	1097(2)	35(3)
F(2)	8750	3750	2008(2)	44(3)
F(3)	9550(5)	3322(2)	1557(2)	44(3)
F(4)	7723(2)	3420(1)	1550(1)	32(1)
F(5)	9465(7)	3369(3)	1339(3)	30(4)
F(6)	9147(7)	3544(3)	1952(2)	33(4)
F(7)	8421(9)	3949(3)	1142(2)	31(4)
F(8)	8095(10)	4131(3)	1764(3)	37(4)
C(13)	1250	1250	1250	143(6)
O(1)	1250	1250	869(2)	193(5)
C(14)	1110(30)	1705(7)	1449(9)	115(7)

3.4.7 Table S7: Atomic coordinates (× 10⁴) and equivalent isotropic displacement parameters $(Å^2 \times 10^3)$ for a. U(eq) is defined as one third of the trace of the orthogonalized U^{ij} tensor.

Au(1)-C(1)	2.010(4)
Au(1)-S(1)#1	2.3036(12)
Au(2)-S(1)	2.2855(11)
Au(2)-S(1)#2	2.2855(11)
S(1)-C(5)	1.835(4)
S(1)-Au(1)#1	2.3036(12)
C(1)-N(1)	1.348(5)
C(1)-N(2)	1.349(5)
N(1)-C(2)	1.391(5)
N(1)-C(4)	1.458(5)
C(2)-C(6)	1.395(5)
C(2)-C(3)	1.403(6)
C(3)-C(9)	1.393(5)
C(3)-N(2)	1 401(5)
N(2)-C(10)	1 484(5)
C(4)-C(5)	1 518(5)
C(4)-H(1)	0 9900
C(4)-H(2)	0.9900
C(5)-H(3)	0.9900
C(5)-H(4)	0.9900
C(6)-C(7)	1 373(6)
C(6)-H(5)	0.9500
C(7)- $C(8)$	1400(7)
C(7)-H(6)	0.9500
C(8)-C(9)	1 377(6)
C(8)-H(7)	0 9500
C(9)-H(8)	0.9500
C(10)-C(11)	1.514(6)
C(10)-C(12)	1.522(6)
C(10)-H(9)	1.0000
C(11)-H(10)	0.9800
C(11)-H(11)	0.9800
C(11)-H(12)	0.9800
C(12)-H(13)	0.9800
C(12)-H(14)	0.9800
C(12)-H(15)	0.9800
C(1)-Au(1)-S(1)#1	173.66(11)
S(1)-Au(2)-S(1)#2	177.55(5)
C(5)-S(1)-Au(2)	108.38(13)
C(5)-S(1)-Au(1)#1	106.66(12)
Au(2)-S(1)-Au(1)#1	96.60(4)
N(1)-C(1)-N(2)	107.5(3)
N(1)-C(1)-Au(1)	125.2(3)
N(2)-C(1)-Au(1)	126.9(3)
C(1)-N(1)-C(2)	110.3(3)
C(1)-N(1)-C(4)	125.9(3)
C(2)-N(1)-C(4)	123.7(3)
N(1)-C(2)-C(6)	131.1(4)
N(1)-C(2)-C(3)	106.3(3)
C(6)-C(2)-C(3)	122.5(4)
C(9)-C(3)-N(2)	133.6(4)
C(9)-C(3)-C(2)	120.6(4)
N(2)-C(3)-C(2)	105.8(3)

3.4.8 Table S8: Bond lengths [Å] and angles [°] for 5a.

C(1)-N(2)-C(3)	110.1(3)
C(1)-N(2)-C(10)	121.9(3)
C(3)-N(2)-C(10)	127.5(3)
N(1)-C(4)-C(5)	114.1(3)
N(1)-C(4)-H(1)	108.7
C(5)-C(4)-H(1)	108.7
N(1)-C(4)-H(2)	108.7
C(5)-C(4)-H(2)	108.7
H(1)-C(4)-H(2)	107.6
C(4)-C(5)-S(1)	117.8(3)
C(4)-C(5)-H(3)	107.8
S(1)-C(5)-H(3)	107.8
C(4)-C(5)-H(4)	107.8
S(1)-C(5)-H(4)	107.8
H(3)-C(5)-H(4)	107.2
C(7)-C(6)-C(2)	116.0(4)
C(7)-C(6)-H(5)	122.0
C(2)-C(6)-H(5)	122.0
C(6)-C(7)-C(8)	121.9(4)
C(6)-C(7)-H(6)	119.0
C(8)-C(7)-H(6)	119.0
C(9)-C(8)-C(7)	122.3(4)
C(9)-C(8)-H(7)	118.8
C(7)-C(8)-H(7)	118.8
C(8)-C(9)-C(3)	116.6(4)
C(8)-C(9)-H(8)	121.7
C(3)-C(9)-H(8)	121.7
N(2)-C(10)-C(11)	109.7(3)
N(2)-C(10)-C(12)	113.0(3)
C(11)-C(10)-C(12)	112.1(4)
N(2)-C(10)-H(9)	107.3
C(11)-C(10)-H(9)	107.3
C(12)-C(10)-H(9)	107.3
C(10)-C(11)-H(10)	109.5
C(10)-C(11)-H(11)	109.5
H(10)-C(11)-H(11)	109.5
C(10)-C(11)-H(12)	109.5
H(10)-C(11)-H(12)	109.5
H(11)-C(11)-H(12)	109.5
C(10)-C(12)-H(13)	109.5
C(10)-C(12)-H(14)	109.5
H(13)-C(12)-H(14)	109.5
C(10)-C(12)-H(15)	109.5
H(13)-C(12)-H(15)	109.5
H(14)-C(12)-H(15)	109.5

Symmetry transformations used to generate equivalent atoms: #1 -x+5/4,y,-z+1/4 #2 x,-y+1/4,-z+1/4 #3 -x+7/4,-y+3/4,z

3.4.9 Table S9: Anisotropic displacement parameters

Anisotropic displacement parameters ($Å^2 \times 10^3$) for a. The anisotropic displacement factor exponent takes the form: $-2\pi^2$ [$\eta^2 \alpha *^2 Y^{11} + ... + 2 \eta \kappa \alpha * \beta * Y^{12}$]

11	22	22	22	12	10
U^{11}	U^{22}	Uss.	U23	U13	U^{12}
16(1)	15(1)	16(1)	-2(1)	2(1)	-2(1)
14(1)	14(1)	24(1)	4(1)	0	0
18(1)	20(1)	19(1)	5(1)	0(1)	2(1)
22(2)	8(2)	12(2)	4(2)	3(2)	1(2)
16(2)	16(2)	13(2)	0(1)	3(1)	-1(1)
19(2)	19(2)	17(2)	5(2)	1(2)	1(2)
18(2)	15(2)	20(2)	4(2)	4(2)	0(2)
21(2)	11(2)	14(2)	-1(1)	2(1)	2(1)
25(2)	11(2)	17(2)	-2(2)	0(2)	-1(2)
16(2)	20(2)	17(2)	-3(2)	0(2)	-5(2)
22(2)	20(2)	27(3)	8(2)	0(2)	-6(2)
20(2)	32(3)	42(3)	9(2)	-2(2)	-9(2)
21(2)	40(3)	38(3)	6(2)	13(2)	0(2)
25(2)	28(3)	29(3)	0(2)	8(2)	1(2)
32(2)	18(2)	17(2)	-7(2)	3(2)	-3(2)
59(3)	34(3)	24(3)	-4(2)	-19(2)	5(3)
46(3)	22(2)	30(3)	-7(2)	13(2)	0(2)
30(1)	16(1)	21(1)	0	0	-7(1)
30(5)	57(7)	18(4)	0	0	-1(5)
60(7)	50(7)	22(4)	0	0	-24(5)
39(4)	20(4)	74(8)	8(5)	-25(6)	0(3)
34(1)	23(1)	38(2)	-6(1)	4(1)	-12(1)
22(7)	15(7)	54(12)	-12(8)	12(7)	-3(5)
35(7)	32(7)	31(6)	19(5)	3(5)	-3(6)
36(8)	34(8)	24(6)	-3(5)	-5(5)	-4(6)
44(7)	26(7)	40(8)	-16(6)	4(7)	4(5)
115(7)	163(8)	150(8)	0	0	0
156(7)	224(8)	200(8)	õ	õ	14(6)
103(9)	118(10)	125(10)	(3(7))	-8(7)	-3(7)
105())	110(10	,123(10	, , , , ,	0(7)	5(7)
	U ¹¹ 16(1) 14(1) 18(1) 22(2) 16(2) 19(2) 18(2) 21(2) 25(2) 16(2) 22(2) 20(2) 21(2) 25(2) 32(2) 59(3) 46(3) 30(1) 30(5) 60(7) 39(4) 34(1) 22(7) 35(7) 36(8) 44(7) 115(7) 156(7) 103(9)	U11U22 $16(1)$ $15(1)$ $14(1)$ $14(1)$ $18(1)$ $20(1)$ $22(2)$ $8(2)$ $16(2)$ $16(2)$ $19(2)$ $19(2)$ $18(2)$ $15(2)$ $21(2)$ $11(2)$ $25(2)$ $11(2)$ $26(2)$ $20(2)$ $20(2)$ $22(2)$ $20(2)$ $22(3)$ $21(2)$ $40(3)$ $25(2)$ $28(3)$ $32(2)$ $18(2)$ $59(3)$ $34(3)$ $46(3)$ $22(2)$ $30(1)$ $16(1)$ $30(5)$ $57(7)$ $60(7)$ $50(7)$ $39(4)$ $20(4)$ $34(1)$ $23(1)$ $22(7)$ $15(7)$ $35(7)$ $32(7)$ $36(8)$ $34(8)$ $44(7)$ $26(7)$ $115(7)$ $163(8)$ $156(7)$ $224(8)$ $103(9)$ $118(10)$	U^{11} U^{22} U^{33} 16(1)15(1)16(1)14(1)14(1)24(1)18(1)20(1)19(1)22(2)8(2)12(2)16(2)16(2)13(2)19(2)19(2)17(2)18(2)15(2)20(2)21(2)11(2)14(2)25(2)11(2)17(2)16(2)20(2)27(3)20(2)32(3)42(3)21(2)40(3)38(3)25(2)28(3)29(3)32(2)18(2)17(2)59(3)34(3)24(3)46(3)22(2)30(3)30(1)16(1)21(1)30(5)57(7)18(4)60(7)50(7)22(4)39(4)20(4)74(8)34(1)23(1)38(2)22(7)15(7)54(12)35(7)32(7)31(6)36(8)34(8)24(6)44(7)26(7)40(8)115(7)163(8)150(8)156(7)224(8)200(8)103(9)118(10)125(10)	U11U22U33U23 $16(1)$ $15(1)$ $16(1)$ $-2(1)$ $14(1)$ $14(1)$ $24(1)$ $4(1)$ $18(1)$ $20(1)$ $19(1)$ $5(1)$ $22(2)$ $8(2)$ $12(2)$ $4(2)$ $16(2)$ $16(2)$ $13(2)$ $0(1)$ $19(2)$ $17(2)$ $5(2)$ $18(2)$ $15(2)$ $20(2)$ $4(2)$ $21(2)$ $11(2)$ $14(2)$ $-1(1)$ $25(2)$ $11(2)$ $17(2)$ $-2(2)$ $16(2)$ $20(2)$ $17(2)$ $-3(2)$ $22(2)$ $20(2)$ $27(3)$ $8(2)$ $20(2)$ $32(3)$ $42(3)$ $9(2)$ $21(2)$ $40(3)$ $38(3)$ $6(2)$ $25(2)$ $28(3)$ $29(3)$ $0(2)$ $32(2)$ $18(2)$ $17(2)$ $-7(2)$ $59(3)$ $34(3)$ $24(3)$ $-4(2)$ $46(3)$ $22(2)$ $30(3)$ $-7(2)$ $30(1)$ $16(1)$ $21(1)$ 0 $30(5)$ $57(7)$ $18(4)$ 0 $60(7)$ $50(7)$ $22(4)$ 0 $39(4)$ $20(4)$ $74(8)$ $8(5)$ $34(1)$ $23(1)$ $38(2)$ $-6(1)$ $22(7)$ $15(7)$ $54(12)$ $-12(8)$ $35(7)$ $32(7)$ $31(6)$ $19(5)$ $36(8)$ $34(8)$ $24(6)$ $-3(5)$ $44(7)$ $26(7)$ $40(8)$ $-16(6)$ $115(7)$ $163(8)$ $150(8)$ 0 $103(9)$ $118(10)$ 125	U11U22U33U23U1316(1)15(1)16(1)-2(1)2(1)14(1)14(1)24(1)4(1)018(1)20(1)19(1)5(1)0(1)22(2)8(2)12(2)4(2)3(2)16(2)16(2)13(2)0(1)3(1)19(2)19(2)17(2)5(2)1(2)18(2)15(2)20(2)4(2)4(2)21(2)11(2)14(2)-1(1)2(1)25(2)11(2)17(2)-2(2)0(2)26(2)20(2)17(2)-3(2)0(2)20(2)22(2)20(2)27(3)8(2)0(2)20(2)32(3)42(3)9(2)-2(2)21(2)40(3)38(3)6(2)13(2)25(2)28(3)29(3)0(2)8(2)32(2)18(2)17(2)-7(2)3(2)59(3)34(3)24(3)-4(2)-19(2)46(3)22(2)30(3)-7(2)13(2)30(1)16(1)21(1)0030(5)57(7)18(4)0060(7)50(7)22(4)0039(4)20(4)74(8)8(5)-25(6)34(1)23(1)38(2)-6(1)4(1)22(7)15(7)54(12)-12(8)12(7)35(7)32(7)31(6)19(5)3(5)36(8)34(8)24(6)-3(5)-5(5)44(7)26(7) </td

3.4.10 Table S10: Hydrogen coordinates

	Hydrogen coordinates ($(\times 10^4)$	and isotropic displacement parameters	$(Å^2 \times 1)$	103)
--	------------------------	-----------------	---------------------------------------	------------------	-----	---

	х	у	Z	U(eq)
H(1)	7318	2470	1188	21
H(2)	8300	2813	1119	21
H(3)	8589	2556	1712	21
H(4)	9437	2282	1460	21
H(5)	10339	2731	943	28
H(6)	11817	2678	529	38
H(7)	11760	2223	-10	40
H(8)	10226	1801	-167	33
H(9)	7176	1391	108	27
H(10)	6884	2073	-207	59
H(11)	7049	1678	-515	59
H(12)	8012	2025	-428	59
H(13)	9105	1319	-330	49
H(14)	8136	961	-307	49
H(15)	8927	1027	50	49

3.4.11 Table S11: Torsion angles [°] for 5a.

N(2)-C(1)-N(1)-C(2)	0.6(4)
Au(1)-C(1)-N(1)-C(2)	-172.9(3)
N(2)-C(1)-N(1)-C(4)	177.5(3)
Au(1)-C(1)-N(1)-C(4)	4.0(5)
C(1)-N(1)-C(2)-C(6)	176.4(4)
C(4)-N(1)-C(2)-C(6)	-0.6(6)
C(1)-N(1)-C(2)-C(3)	-0.1(4)
C(4)-N(1)-C(2)-C(3)	-177.1(3)
N(1)-C(2)-C(3)-C(9)	178.4(4)
C(6)-C(2)-C(3)-C(9)	1.6(6)
N(1)-C(2)-C(3)-N(2)	-0.4(4)
C(6)-C(2)-C(3)-N(2)	-177.3(4)
N(1)-C(1)-N(2)-C(3)	-0.9(4)
Au(1)-C(1)-N(2)-C(3)	172.5(3)
N(1)-C(1)-N(2)-C(10)	-173.3(3)
Au(1)-C(1)-N(2)-C(10)	0.1(5)
C(9)-C(3)-N(2)-C(1)	-177.8(4)
C(2)-C(3)-N(2)-C(1)	0.9(4)
C(9)-C(3)-N(2)-C(10)	-6.0(7)
C(2)-C(3)-N(2)-C(10)	172.7(3)
C(1)-N(1)-C(4)-C(5)	110.7(4)
C(2)-N(1)-C(4)-C(5)	-72.8(4)
N(1)-C(4)-C(5)-S(1)	-74.9(4)
Au(2)-S(1)-C(5)-C(4)	51.1(3)
Au(1)#1-S(1)-C(5)-C(4)	-51.9(3)
N(1)-C(2)-C(6)-C(7)	-177.8(4)
C(3)-C(2)-C(6)-C(7)	-1.8(6)
C(2)-C(6)-C(7)-C(8)	0.8(6)
C(6)-C(7)-C(8)-C(9)	0.4(7)
C(7)-C(8)-C(9)-C(3)	-0.7(7)
N(2)-C(3)-C(9)-C(8)	178.3(4)
C(2)-C(3)-C(9)-C(8)	-0.3(6)
C(1)-N(2)-C(10)-C(11)	91.5(4)
C(3)-N(2)-C(10)-C(11)	-79.5(5)
C(1)-N(2)-C(10)-C(12)	-142.7(4)
C(3)-N(2)-C(10)-C(12)	46.3(5)

Symmetry transformations used to generate equivalent atoms: #1 -x+5/4,y,-z+1/4 #2 x,-y+1/4,-z+1/4 #3 -x+7/4,-y+3/4,z

D-HA	d(D-H)	d(HA)	d(DA)	<(DHA)
C(4)-H(2)F(4)	0.99	2.45	3.114(4)	124.1
C(4)-H(2)F(5)	0.99	2.32	3.155(12)	142.0
C(4)-H(2)F(7)#3	0.99	2.38	3.353(11)	166.4
C(5)-H(3)F(3)	0.99	2.61	3.167(8)	115.6
C(5)-H(3)F(8)#3	0.99	2.61	3.353(11)	132.1
C(6)-H(5)F(5)	0.95	2.58	3.424(9)	148.7
C(9)-H(8)F(2)#4	0.95	2.36	3.151(6)	140.9
C(9)-H(8)F(6)#5	0.95	2.43	3.147(11)	132.2
C(11)-H(11)F(1)#6	0.98	2.59	3.568(6)	173.4
C(12)-H(13)F(6)#4	0.98	2.43	3.163(9)	131.0
C(12)-H(15)S(1)#2	0.98	2.87	3.603(5)	132.1

3.4.12	Table S12:	Hvdrogen bonds for 5a [Å and °].
	1 4010 0120	inguiogen bonus ior su fri and j.

 Symmetry transformations used to generate equivalent atoms:

 #1 -x+5/4,y,-z+1/4
 #2 x,-y+1/4,-z+1/4
 #3 -x+7/4,-y+3/4,z

 #4 -x+2,y-1/4,z-1/4
 #5 x+1/4,-y+1/2,z-1/4
 #6 -x+3/2,-y+1/2,-z

3.5 Cyclic voltammetry

3.5.1 Figure S23: Cyclic voltammogram of 5a. Scan rate: 50 mV/s; Potential window: -2.5 V to 2.5 V; Electrolyte: 0.10 M [NH₄][ClO₄]; Quiet time: 2s; Sample concentration: 0.010 M.

4. Computational data

4.1 Computational analysis of cluster 5a.

4.1.1 Figure S24: Relaxed structure of 5a calculated using PBE functional. Au atoms are labeled as 1-6 in reference to Table S13.

4.1.2 Figure S25: Gold-projected density of states for 5a.

HOMO-1

LUMO

LUMO+1

LUMO+2

Au-Au	Experimental geometry Distance [5a][PF ₆] ₂ (Å)	Optimized geometry distance (Å)
1-6	3.537	3.637
1-5	3.426	3.582
1-3	4.633	4.753
1-4	3.537	3.600
2-3	3.537	3.597
3-4	3.426	3.592
3-5	3.537	3.626

4.1.4 Table S13: Shortest Au-Au distances in 5a.

4.1.5 Figure S27: Dipole transition contribution maps (DTCM) analysis for 5a – Principal axes of moments of inertia.

4.1.6 Figure S28: DTCM for peak at E = 3.779 eV.

Red / blue areas indicate constructive / destructive contributions of individual transitions to the total dipole moment. PDOS is analysed as projected to atomic Au s, p, d components. The grey area denotes orbital weights in ligands.

4.1.7 Figure S29: DTCM for peak at E = 4.413 eV.

Axis 0

4.1.8 Figure S30: DTCM for peak at E = 4.570 eV.

References

5.

1. a) Y. Zhu, C. Cai and G. Lu, *Helv. Chim. Acta*, 2014, **97**, 1666. b) M. -C. Brandy, M. C. Jennings and R.

- J. Puddephatt, J. Chem. Soc., Dalton Trans., 2000, 4601.
- 2. H. Hope, Prog. Inorg. Chem., 1993, 41, 1.
- 3. G. M. Sheldrick, Acta. Cryst., 2015, A71, 3.
- 4. G. M. Sheldrick, *Acta. Cryst.*, 2015, **C71**, 3.
- 5. J. Enkovaara, et. al. J. Phys. Condens. Matter, 2010, 22, 253202.
- 6. J. P. Perdew, K. Burke, and M. Ernzahof, *Phys. Rev. Lett.*, 1996, 78, 3856.
- 7. M. Kuisma, J. Ojanen, J. Enkovaara, and T. T. Rantala, Phys. Rev. B, 82, 115106
- 8. M. Walter, H. Häkkinen, L. Lehtovaara, J. Enkovaara, C. Rostgaard and J. J. Mortensen, *J. Phys. Chem.*, 2008, **128**, 244101.
- 9. S. Malola, L. Lehtovaara, J. Enkovaara, and H. Häkkinen, ACS Nano, 2013, 7, 10263