Electronic Supplementary Material (ESI) for Chemical Communications. This journal is © The Royal Society of Chemistry 2020

Supporting Information

Extended conjugated borenium dimers via late stage functionalization of air-stable borepinium ions

Yohei Adachi,^{a,b} Fuka Arai^a and Frieder Jäkle*^b

^a Department of Applied Chemistry, Graduate School of Engineering, Hiroshima University, Higashi-Hiroshima 739-8527,

Japan. Tel: +81-82-424-7743. Fax: +81-82-424-5494.

^b Department of Chemistry, Rutgers University Newark, 73 Warren Street, Newark, New Jersey 07102, United States. E-mail: fjaekle@rutgers.edu.

Experimental	2-11
Water-stability test	12
¹ H NMR spectral changes upon lithiation	13
¹ H NMR spectral comparison of 2-H and 2-F	14
Crystal structures of 1-F	14 – 15
Absorption and fluorescence data	15 – 17
Summary of electrochemical data	18
DFT results	18 - 20
NMR and MS spectra	21 - 45
Cartesian Coordinates for Optimized Structures	45 - 52

<u>Experimental</u>

General

All reactions were carried out under nitrogen using Schlenk techniques or an inert-atmosphere glovebox. THF and ether were distilled from Na/benzophenone prior to use. Dichloromethane and fluorobenzene were distilled from CaH₂. Hexane and toluene were purified using a solvent purification system (alumina/copper) and stored over Na/K alloy. All chemicals were purchased from commercial sources and directly used. 1,2-Bis(2-bromo-3-thienyl)benzene,^{S1} 1,2-bis(2-bromo-3-thienyl)-4,5-difluorobenzene,^{S1} and 1,3-di-*tert*-butyl-4,5-dimethyl-2-(trimethylsilyl)-1*H*-imidazol-3-ium trifluoromethanesulfonate^{S2} were prepared according to literature.

NMR data were acquired at room temperature. 160 MHz ¹¹B and 470 MHz ¹⁹F NMR data were recorded on a 500 MHz Bruker AVANCE spectrometer; 500 MHz ¹H and 126 MHz ¹³C NMR data were recorded on a 500 MHz Bruker Auto AVANCE spectrometer. ¹¹B NMR spectra were acquired with boron-free quartz NMR tubes on the 500 MHz Bruker AVANCE with a 5 mm PH SEX 500S1 ¹¹B-H/F-D probe. Abbreviations Bz and Th used for the following NMR assignments stand for fused benzene and thiophene ring, respectively.

MALDI-TOF MS measurements were performed on a Bruker Ultraflextreme in reflectron mode with delayed extraction. Compounds were dissolved in DCM (10 mg/mL), mixed with a matrix solution of *trans*-2[3-(4-*tert*-butylphenyl)-2-methyl-2-propenylidene]malononitrile in DCM (10 mg/mL), and then spotted on the wells of a target plate. Red phosphorous was used for calibration. High-resolution ESI and APCI mass spectra were obtained on a Thermo Fisher Scientific LTQ Orbitrap XL spectrometer at N-BARD, Hiroshima University. Single crystal X-ray diffraction data was collected at 123K on a Rigaku R-AXIS RAPID diffractometer using graphite-monochromated MoK α radiation. The structure was solved by Direct Method (SIR92) and expanded using Fourier techniques. Since the solvent (dichloromethane) in the crystal of **1-F** was highly disordered, the SQUEEZE subroutine of the PLATON^{S3} software suite was used to remove the scattering contributions from the highly disordered solvent molecules. The resulting new HKL file was used to further refine the structure. Non-hydrogen atoms were refined anisotropically, whereas hydrogen atoms were refined using the riding model by the full-matrix least-squares method. Graphical crystal structures were generated using Mercury 3.10.3 (Cambridge Crystallographic Data Centre). All other calculations

were performed using the Olex2 program. UV-visible absorption data were acquired on a Varian Cary 5000 UV-Vis/NIR spectrophotometer. The fluorescence data and lifetimes were measured using a Horiba Fluorolog-3 spectrofluorometer equipped with a 350 nm nanoLED and a FluoroHub R-928 detector. Absolute quantum yields (ϕ) were measured on the HORIBA Fluorolog-3 using a pre-calibrated Quanta- ϕ integrating sphere. Light from the sample compartment is directed into the sphere via a fiber-optic cable and an F-3000 Fiber-Optic Adapter, and then returned to the sample compartment (and to the emission monochromator) via a second fiber-optic cable and an F-3000 Fiber-Optic Adapter, cyclic voltammetry (CV) experiments were carried out on a BASI CV-50 W analyzer. The three-electrode system consisted of a platinum disk as working electrode, a Pt wire as secondary electrode, and an Ag wire as the pseudo-reference electrode. The voltammograms were recorded with ca. 1.0 mM solutions in acetonitrile containing *n*Bu₄N[PF₆] (0.1 M) as the supporting electrolyte. The scans were referenced after the addition of a small amount of ferrocene as internal standard. The potentials are reported relative to the ferrocene/ferrocenium couple.

Geometry optimization and TD-DFT calculations were performed with the Gaussian09 program using the hybrid density functional B3LYP with a 6-31G(d,p) basis set. NICS calculations were carried out using the GIAO method at the B3LYP/6-31+G(d,p) level of theory.

Synthesis

Synthesis of 3-H.

To a solution of 1,2-bis(2-bromo-3-thienyl)benzene (4.30 g, 10.7 mmol) in a mixture of 8 mL of diethyl ether and 40 mL of toluene were slowly added 13.5 mL (21.6 mmol) of 1.6 mol/L *n*BuLi in hexane at –78 °C and

the mixture was stirred for 1 h. Dimethyldichlorosilane (1.47 g, 11.4 mmol) was slowly added at -78 °C. The mixture was warmed to room temperature and then stirred overnight. The resulting mixture was hydrolyzed with water, and the organic layer was washed twice with water and then once with brine. After drying over anhydrous sodium sulfate, the solvent was evaporated. The crude product was purified by silica gel chromatography using hexanes as the eluent to give 2.31 g (7.73 mmol, 72% yield) of **3-H** as a white solid. ¹H NMR (500 MHz, CDCl₃) δ : 7.62 (dd, *J* = 5.8, 3.4 Hz, 2H, Bz), 7.52 (d, *J* = 4.7 Hz, 2H, Th), 7.38–7.35 (m, 4H, Bz and Th), 0.81 (br s, 3H, SiMe₂), 0.06 (br s, 3H, SiMe₂). ¹³C NMR (126 MHz, CDCl₃) δ : 148.1, 135.1, 135.0, 131.8, 131.1, 128.9, 126.6. Two signals for Si–C were not detected, probably due to their low intensities. HRMS (APCI, positive) Calcd for C₁₆H₁₄S₂Si: M⁺: 298.03062, Found 298.03024.

Synthesis of 3-F.

Compound **3-F** was prepared from 3.00 g (6.88 mmol) of 1,2-bis(2-bromo-3-thienyl)-4,5-difluorobenzene, 8.6 mL (13.8 mmol) of 1.6 mol/L *n*BuLi in hexane, and 1.08 g (8.37 mmol) of dimethyldichlorosilane in a mixture of 8 mL of diethyl ether and 40 mL of toluene in a manner similar to that above. The crude product was purified by silica gel chromatography using hexanes as the eluent to give 1.43 g (4.27 mmol, 62% yield) of **3-F** as a white solid. ¹H NMR (500 MHz, CDCl₃) δ : 7.53 (d, *J* = 4.7 Hz, 2H, Th), 7.42 (t, *J* = 10.0 Hz, 2H, Bz), 7.29 (d, *J* = 4.7 Hz, 2H, Th), 0.82 (br s, 3H, SiMe₂), 0.09 (br s, 3H, SiMe₂). ¹³C NMR (126 MHz, CDCl₃) δ : 148.4 (dd, *J*_{C-F} = 15, 251 Hz), 146.1, 135.8, 132.1 (t, *J*_{C-F} = 4.6 Hz), 131.5, 129.5, 119.4 (dd, *J*_{C-H} = 6, 12 Hz). Two signals for Si–C were not detected, probably due to their low intensities. ¹⁹F NMR (470 MHz, CDCl₃) δ : –139.9 (t, *J* = 10.0 Hz). HRMS (APCI, positive) Calcd for C₁₆H₁₂F₂S₂Si: M⁺: 334.01177, Found 334.01163.

Synthesis of 4-H.

A solution of **3-H** (599 mg, 2.01 mmol) in 8 mL of dichloromethane was pre-cooled to -40 °C in a freezer. The solution was taken out from the freezer and immediately 1.02 g (4.07 mmol) of boron tribromide were added over three min. The mixture was stirred overnight at room temperature. All volatiles were removed in vacuum, and the resulting solid was washed twice with hexanes. The residue was dried in vacuum to give **4-H** as an air-sensitive yellowish solid in quantitative yield. ¹H NMR (500 MHz, CDCl₃) δ : 8.19 (dd, J = 6.1, 3.5 Hz, 2H, Bz), 8.05 (d, J = 5.0 Hz, 2H, Th), 7.98 (d, J = 5.0 Hz, 2H, Th), 7.55 (dd, J = 6.2, 3.4 Hz, 1H, Bz). ¹³C NMR (126 MHz, CDCl₃) δ : 150.8, 135.9, 132.6, 131.8, 131.5, 127.9. One signal for B–C was not detected, probably due to its low intensity as a result of quadrupolar broadening. ¹¹B NMR (160 MHz, CDCl₃) δ : 45.6.

Synthesis of 4-F.

A solution of **3-F** (668 mg, 2.00 mmol) in 8 mL of dichloromethane was pre-cooled to -40 °C in a freezer. The solution was taken out from the freezer and immediately 1.02 g (4.07 mmol) of boron tribromide were added over three min. The mixture was stirred overnight at room temperature. Hexanes (3 mL) were added and the solution was cooled in a freezer to -40 °C, resulting in formation of a solid. The liquid layer was carefully removed by decantation and the remaining solid was washed with cold hexanes. The solid was collected by filtration and dried in vacuum to give 686 mg (1.87 mmol, 94% yield) of **4-F** as an air-sensitive colorless solid. ¹H NMR (500 MHz, CDCl₃) δ 8.03 (d, *J* = 5.0 Hz, 2H, Th), 8.00 (t, *J* = 10.4 Hz, 2H, Bz), 7.96 (d, *J* = 5.0 Hz, 2H, Th). ¹³C NMR (126 MHz, CDCl₃) δ : 149.0 (dd, *J*_{C-F} = 16 and 253 Hz), 148.7, 136.6, 131.7, 130.0 (t, *J*_{C-F} = 5 Hz), 119.7 (dd, *J*_{C-F} = 7 and 13 Hz). One signal for B–C was not detected, probably due to its low intensity as a result of quadrupolar broadening. ¹¹B NMR (160 MHz, CDCl₃) δ : 45.9. ¹⁹F NMR (470 MHz, CDCl₃) δ : -136.6 (t, *J* = 9.4 Hz).

Synthesis of 1-H.

A solution of **4-H** (663 mg, 2.00 mmol) in 12 mL of fluorobenzene was pre-cooled to -40 °C in a freezer. To the solution was added a solution of 873 mg (2.03 mmol) of 1,3-di-*tert*-butyl-4,5-dimethyl-2-(trimethylsilyl)-1*H*-imidazol-3-ium trifluoromethanesulfonate in 3 mL of fluorobenzene at room temperature. The mixture was stirred for 3 hours, then all volatiles were removed in vacuum. The resulting solid was dissolved in dichloromethane and washed three times with saturated KPF₆ solution, then four times with deionized water. After drying over anhydrous sodium sulfate, the solvent was evaporated. The resulting viscous oil was reprecipitated from CH₂Cl₂/Et₂O to give 1.07 g (1.76 mmol, 88% yield) of **1-H** as light yellowish powder. ¹H NMR (500 MHz, CD₂Cl₂) δ : 8.52 (dd, J = 6.2, 3.5 Hz, 2H, Bz), 8.30 (d, J = 5.2 Hz, 2H, Th), 8.23 (d, J = 5.1 Hz, 2H, Th), 7.73 (dd, J = 6.3, 3.4 Hz, 2H, Bz), 2.64 (s, 6H, Me), 1.56 (s, 18H, *t*Bu). ¹¹B NMR (160 MHz, CD₂Cl₂) δ : 41.8. ¹³C NMR (126 MHz, CD₂Cl₂) δ : 153.8 (Th), 147.1 (br, NHC), 142.3 (br, Th), 137.7 (Th), 132.9 (Bz), 132.6 (Th), 132.5 (Bz), 131.9 (NHC), 129.5 (Bz), 64.6 (<u>C</u>-Me₃), 31.8 (C-<u>Me₃</u>), 14.5 (Me). ¹⁹F NMR (470 MHz, CD₂Cl₂) δ : -73.4 (d, J = 711 Hz). HRMS (ESI, positive) Calcd for C₂₇H₃₂BN₂S₂: M⁺: 459.20945, Found 459.20972.

Synthesis of 1-F.

Compound **1-F** was prepared from 686 mg (1.87 mmol) of **4-F** and 805 mg (1.87 mmol) of 1,3-di-*tert*-butyl-4,5-dimethyl-2-(trimethylsilyl)-1*H*-imidazol-3-ium trifluoromethanesulfonate in 15 mL of fluorobenzene in a manner similar to that above. The product was obtained as a white powder (1.10 g, 1.71 mmol, 91% yield). This powder was recrystallized from dichloromethane by vapor diffusion with hexane as the precipitant to give single crystals for XRD analysis. ¹H NMR (500 MHz, CD₂Cl₂) δ : 8.30 (t, *J* = 10.7 Hz, 2H, Bz), 8.25 (d, *J* = 5.1 Hz, 2H, Th), 8.15 (d, *J* = 5.2 Hz, 2H, Th), 2.64 (s, 6H, Me), 1.56 (s, 18H, *t*Bu). ¹¹B NMR (160 MHz, CD₂Cl₂) δ : 44.0. ¹³C NMR (126 MHz, CD₂Cl₂) δ 151.7 (Th), 150.0 (dd, *J* = 254.4, 15.3 Hz, Bz), 146.6 (br, NHC), 142.6 (br, Th), 138.4, (Th), 132.6 (Th), 132.1 (NHC), 130.6 (t, *J* = 4.5 Hz, Bz), 120.7 (dd, *J* = 13.1, 7.1 Hz, Bz), 64.7 (<u>C</u>-Me₃), 31.8 (C-<u>Me₃), 14.5 (Me). ¹⁹F NMR (470 MHz, CDCl₃) δ -71.5 (d, *J* = 710 Hz), -133.4 (t, *J* = 11 Hz). HRMS (ESI, positive) Calcd for C₂₇H₃₀BF₂N₂S₂: M⁺: 495.19060, Found 495.19104.</u>

Derivatization of borepinium ions

Synthesis of 1-F-Si.

To a solution of 1-F (101 mg, 0.157 mmol) in 5 mL of THF were slowly added 0.44 mL (0.40 mmol) of 0.9

mol/L LDA in hexanes/THF at -78 °C, and the mixture was stirred for 40 min at that temperature. Trimethylsilyl chloride (70 mg, 0.64 mmol) was added. The mixture was immediately warmed to room temperature and then stirred for 3h. All volatiles were removed in vacuum, and the residue was dissolved in The solution was washed with saturated KPF₆ solution, then twice with deionized water. dichloromethane. After drying over anhydrous sodium sulfate, the solvent was evaporated. The residue was dissolved in CH₂Cl₂ and the solution added dropwise to ether. The suspension was filtered with Celite and the filtrate was concentrated. The residue was again dissolved in CH₂Cl₂ and precipitated into hexanes. The precipitate was collected by filtration to give 83.9 mg (0.107 mmol, 68% yield) of 1-F-Si as a light brown ¹H NMR (500 MHz, CDCl₃) δ : 8.24 (t, J = 10.5 Hz, 2H, Bz), 8.09 (s, 2H, Th), 2.68 (s, 6H, Me), 1.55 solid. (s, 18H, *t*Bu), 0.45 (s, 18H, SiMe₃). ¹¹B NMR (160 MHz, CDCl₃) δ: 40.9. ¹³C NMR (126 MHz, CDCl₃) δ: 156.3 (Th), 151.6 (Th), 149.5 (dd, J = 254.9, 15.2 Hz, Bz), 137.9 (Th), 131.7 (NHC), 130.1 (t, J = 4.4 Hz, Bz), 120.2 (dd, J = 12.9, 6.8 Hz, Bz), 64.0 (C-Me₃), 31.6 (C-Me₃), 14.2 (NHC-Me), -0.29 (SiMe₃). ¹⁹F NMR (470 MHz, CDCl₃) δ : -73.4 (d, J = 713 Hz), -134.8 (t, J = 11 Hz). Two signals for B-C were not detected, probably due to their low intensity as a result of quadrupolar broadening. HRMS (ESI, positive) Calcd for C₃₃H₄₆BF₂N₂S₂Si₂: M⁺: 639.26966, Found 639.27106.

Synthesis of 2-H via route 1.

To a solution of **1-H** (100 mg, 0.165 mmol) in 10 mL of THF were slowly added 0.17 mL (0.15 mmol) of 0.9 mol/L LDA in hexanes/THF at -78 °C and the mixture was stirred for 40 min at that temperature. CuCl₂ (28.3 mg, 0.21 mmol) was added as a solid. The mixture was gradually warmed to room temperature over 3h, and then stirred for 3h at room temperature. All volatiles were removed in vacuum, and the residue was

dispersed in 100 mL of dichloromethane. The mixture was filtered through Celite and the filtrate was concentrated. The residue was reprecipitated from acetonitrile/saturated KPF₆ solution. The precipitate was again dissolved in dichloromethane and dried over anhydrous sodium sulfate. The residue was dispersed in 5 mL of chloroform and sonicated for 20 min. The precipitate was collected to give 46.4 mg (38.4 μ mol, 47% yield) of **2-H** as a yellowish powder. NMR spectral data matched those of compound **2-H** prepared via route 2 (see below).

Synthesis of 2-F via route 1.

Compound **2-F** was prepared from 101 mg (0.158 mmol) of **1-F**, 0.16 mL (0.144 mmol) of 0.9 mol/L LDA in hexane/THF, and 26.8 mg (0.199 mmol) of CuCl₂ in 5 mL of THF in a manner similar to that above. The product was obtained as light reddish powder (53.9 mg, 42.2 μ mol, 53% yield). NMR spectral data matched those of compound **2-F** prepared via route 2 (see below).

Synthesis of 5-H.

To a solution of **3-H** (251 mg, 0.839 mmol) in 5 mL of diethyl ether were slowly added 0.53 mL (0.848 mmol) of 1.6 mol/L *n*BuLi in hexane at 0 °C and the mixture was stirred for 1 h at the temperature. The mixture was cooled to -78 °C, then CuCl₂ (128 mg, 0.952 mmol) was added as a solid. The mixture was slowly warmed to room temperature and stirred overnight. Dichloromethane was added and the organic components were washed twice with water, then once with brine. After drying over anhydrous sodium sulfate, the solvent

was evaporated. The crude product was purified by silica gel chromatography using a 9:1 mixture of hexanes/dichloromethane to give 103 mg (0.174 mmol, 41% yield) of **5-H** as a white solid. ¹H NMR (500 MHz, CDCl₃) δ : 7.67–7.59 (m, 4H, Bz), 7.50 (d, J = 4.6 Hz, 2H, Th), 7.44 (s, 2H, Th), 7.38–7.33 (m, 6H, Bz and Th), 0.82 (br s, 6H, SiMe₂), 0.08 (br s, 6H, SiMe₂). ¹³C NMR (126 MHz, CDCl₃) δ : 148.7, 148.1, 140.3, 135.1, 134.92, 134.88, 134.7, 131.9, 131.2, 131.0, 129.1, 128.9, 126.8, 126.7, –2.3 (br s), –3.7 (br s). HRMS (MALDI-TOF, positive) Calcd for C₃₂H₂₆S₄Si₂: M⁺: 594.0450, Found 594.0478.

Synthesis of 5-F.

Compound **5-F** was prepared from 248.1 mg (0.742 mmol) of **3-F**, 0.47 mL (0.75 mmol) of 1.6 mol/L *n*BuLi in hexane, and 111 g (0.826 mmol) of CuCl₂ in 5 mL of diethyl ether in a manner similar to that above. The crude product was purified by silica gel chromatography using a 9:1 mixture of hexanes/dichloromethane as the eluent to give 95.3 mg (0.143 mmol, 39% yield) of **5-F** as a white solid. ¹H NMR (500 MHz, CDCl₃) δ : 7.56 (d, *J* = 4.7 Hz, 2H, Th), 7.47–7.40 (m, 4H, Bz), 7.34 (s, 2H, Th), 7.31 (d, *J* = 4.7 Hz, 2H, Th), 0.81 (br s, 6H, SiMe₂), 0.11 (br s, 6H, SiMe₂). ¹³C NMR (126 MHz, CDCl₃) δ 148.5 (dd, *J* = 254.3, 17.1 Hz), 148.4 (dd, *J* = 245.3, 8.4 Hz), 146.6, 146.1, 140.4, 135.6, 135.5, 132.2 (dd, *J* = 5.6, 3.5 Hz), 131.6 (dd, *J* = 5.6, 3.5 Hz), 131.5, 129.7, 128.5, 119.4 (dd, *J* = 30.4, 17.3 Hz), -2.33 (br s), -3.92 (br s). ¹⁹F NMR (470 MHz, CDCl₃) δ : -139.2 – -139.6 (m). HRMS (MALDI-TOF, positive) Calcd for C₃₂H₂₂F₄S₄Si₂: M⁺: 666.0074, Found 666.0104.

Synthesis of 6-H.

To a solution of **5-H** (109 mg, 0.183 mmol) in 3 mL of dichloromethane were slowly added 185 mg (0.738 mmol) of boron tribromide at room temperature and the mixture was stirred overnight. All volatiles were removed in vacuum, and the resulting solid was washed twice with hexanes. The residue was dried in vacuum to give 112 mg (0.169 mmol, 93% yield) of **6-H** as an air-sensitive yellowish solid. ¹H NMR (500 MHz, CDCl₃) δ : 8.38 (s, 2H, Th), 8.34–8.29 (m, 2H, Bz), 8.27–8.23 (m, 2H, Bz), 8.10 (d, *J* = 5.0 Hz, 2H, Th), 8.04 (d, *J* = 4.9 Hz, 2H, Th), 7.66 – 7.60 (m, 4H, Bz). ¹¹B NMR (160 MHz, CDCl₃) δ : 44.6. ¹³C NMR could not be recorded due to the low solubility of the sample.

Synthesis of 6-F.

To a solution of **5-F** (50.0 mg, 75.0 µmol) in 10 mL of dichloromethane were slowly added 75.3 mg (0.301 mmol) of boron tribromide at room temperature and the mixture was stirred for 1 day. All volatiles were removed in vacuum, and the resulting solid was washed twice with hexanes. The residue was dried in vacuum to give 39.1 mg (53.4 µmol, 71% yield) of **6-F** as an air-sensitive yellowish solid. The ¹H and ¹⁹F NMR spectra indicate the presence of unidentified byproducts. Further analysis and purification could not be performed due to the low solubility and air sensitivity of the sample. ¹H NMR (500 MHz, CDCl₃) δ : 8.21 (br s, 2H), 8.08–7.94 (m, 8H). ¹¹B NMR (160 MHz, CDCl₃) δ : 45.0. ¹⁹F NMR (470 MHz, CDCl₃) δ – 135.6 – 136.2 (m). ¹³C NMR could not be recorded due to the low solubility of the sample.

Synthesis of 2-H via route 2.

To a solution of 6-H (112 mg, 0.169 mmol) in 4 mL of fluorobenzene was slowly added a solution of 1,3-ditert-butyl-4,5-dimethyl-2-(trimethylsilyl)-1H-imidazol-3-ium trifluoromethanesulfonate (146 mg, 0.339 mmol) in 4 mL of fluorobenzene at room temperature. The mixture was stirred for 1 day, then all volatiles were removed in vacuum. The resulting solid was dissolved in dichloromethane and washed three times with saturated KPF₆ solution, then four times with deionized water. After drying over anhydrous sodium sulfate, the solvent was evaporated. The residue was dispersed in 5 mL of chloroform and sonicated for 20 The solid was collected by filtration and dried in vacuum to give 46.4 mg (38.4 µmol, 23% yield) of 2min. H as a yellowish powder. ¹H NMR (500 MHz, CD₃CN) δ: 8.75 (s, 2H, Th), 8.72–8.65 (m, 2H, Bz), 8.65– 8.58 (m, 2H, Bz), 8.44–8.32 (m, 4H, Th), 7.90–7.72 (m, 4H, Bz), 2.65 (s, 12H, Me), 1.59 (s, 36H, tBu). ¹¹B NMR (160 MHz, CD₃CN) δ: 42.0. ¹³C NMR (126 MHz, CD₃CN) δ: 154.8 (Th), 154.3 (Th), 146.5 (br, NHC), 146.2 (Th), 144.2 (br, Th), 143.4 (br, Th), 139.4 (Th), 133.7 (Bz), 133.39 (Bz), 133.35 (Th), 133.28 (Bz), 132.90 (NHC), 132.88 (Bz), 132.1 (Th), 130.6 (Bz), 130.2 (Bz), 65.1 (<u>C</u>-Me₃), 31.9 (C-Me₃), 14.6 (Me). ^{19}F NMR (470 MHz, CD₃CN) δ : -72.9 (d, J = 707 Hz). HRMS (ESI, positive) Calcd for C₅₄H₆₂B₂N₄S₄: [M]²⁺: 458.20162, Found 458.20386.

Synthesis of 2-F via route 2.

Compound **2-F** was prepared from 39.1 mg (53.4 µmol) of **6-F** and 48.5 mg (0.113 mmol) of 1,3-di-*tert*-butyl-4,5-dimethyl-2-(trimethylsilyl)-1*H*-imidazol-3-ium trifluoromethanesulfonate in 2 mL of fluorobenzene in a manner similar to that above. The product was obtained as a yellowish powder (7.8 mg, 6.1 µmol, 11% yield). ¹H NMR (500 MHz, CD₃CN) δ : 8.64 (s, 2H, Th), 8.59 (dd, *J* = 13.4, 8.5 Hz, 2H, Bz), 8.50 (dd, *J* = 13.4, 8.5 Hz, 2H, Bz), 8.40 (d, *J* = 5.1 Hz, 2H, Th), 8.30 (d, *J* = 5.2 Hz, 2H, Th), 2.65 (s, 12H, Me), 1.58 (s, 36H, *t*Bu). ¹¹B NMR (160 MHz, CD₃CN) δ : 41.8. ¹³C NMR (126 MHz, CD₃CN) δ : 152.7, 152.3, 150.8 (dd, *J* = 251, 12.9 Hz), 150.5 (dd, *J* = 250, 13.2 Hz), 146.4, 146.1 (br), 144.5 (br), 143.7 (br), 139.9, 133.6, 133.0, 132.4, 131.7 (dd, *J* = 5.9, 3.0 Hz), 130.7 (dd, *J* = 5.9, 2.9 Hz), 121.6 (t, *J* = 18.3 Hz), 65.1, 31.9, 14.6. ¹⁹F NMR (470 MHz, CD₃CN) δ : -72.9 (d, *J* = 706 Hz), -136.3 - -137.3 (m). HRMS (ESI, positive) Calcd for C₅₄H₅₈B₂F₄N₄S₄: [M]²⁺: 494.18278, Found 494.18405.

References

- [S1] Y. Adachi and J. Ohshita, Organometallics, 2018, 37, 869-881.
- [S2] M. F. Silva Valverde, E. Theuergarten, T. Bannenberg, M. Freytag, P. G. Jones and M. Tamm, *Dalton Trans.*, 2015, **44**, 9400–9408.
- [S3] A. L. Spek, Structure validation in chemical crystallography. Acta Crystallogr., 2009, D65, 148–155.

Water-stability test

Figure S1 ¹H NMR spectral changes of **1-H**; initial, after two days, and after one week in water-saturated CDCl₃. The integration ratio is given relative to the initial signal. The residual CHCl₃ peak was used as the integration standard.

Figure S2 ¹H NMR spectral changes of **1-F**; initial, after two days, and after one week in water-saturated CDCl₃. The integration ratio is given relative to the initial signal. The residual CHCl₃ peak was used as the integration standard.

¹H NMR spectral changes upon lithiation

Figure S3 1 H NMR spectral changes of 1-H after lithiation with LDA, then quenching with D₂O.

Figure S4 ¹H NMR spectral changes of 1-F after lithiation with LDA, then quenching with D_2O .

¹H NMR spectral comparison of 2-H and 2-F

Figure S5 ¹H NMR spectra of 2-H and 2-F prepared by the two difference routes in CD₃CN.

Figure S6 Crystal structure of **1-F** obtained at 123 K. Thermal ellipsoids are at the 50% probability level. Hydrogen atoms and PF_6^- anion are omitted for clarity.

Figure S7 Crystal packing structure of **1-F** obtained at 123 K. Thermal ellipsoids are at the 50% probability level. PF_6^- and hydrogen atoms are omitted for clarity. NHC ligands are shown in wireframe style.

Absorption and fluorescence data

Figure S9 Absorption (solid lines) and fluorescence spectra (dashed lines) of 1-H in various solvents.

Figure S10 Absorption (solid lines) and fluorescence spectra (dashed lines) of 1-F in various solvents.

Figure S11 Absorption (solid lines) and fluorescence spectra (dashed lines) of 2-H in various solvents.

Figure S12 Absorption (solid lines) and fluorescence spectra (dashed lines) of 2-F in various solvents.

	Solvent	λ_{Abs}^{max}	λ_{Abs}^{onset}	$\lambda_{\text{Em}}{}^{\text{max}}$	Φ /%	τ (ampl.)/ns
1-H	PhCl	323, 347, 380	394	398	1.8	0.40 (1.0)
	DCM	279, 322, 347, 380	393	397	1.4	0.41 (1.0)
	ACN	277, 320, 345, 377	390	396	1.6	0.40 (1.0)
	DMF	280, 322, 347, 379	394	399	1.5	0.44 (1.0)
	Powder	-	-	430	0.5	0.33 (0.90), 3.72 (0.10)
1-F	PhCl	344, 381	394	396	1.7	0.37 (1.0)
	DCM	276, 341, 376	392	393	1.9	0.37 (1.0)
	ACN	277, 342, 380	390	393	1.2	0.37 (1.0)
	DMF	278, 344, 378	392	397	1.4	0.29 (0.90), 1.66 (0.10)
	Powder	-	-	425	0.4	0.36 (0.91), 4.02 (0.09)
2-H	PhCl	295, 415, 438	461	457	7.1	0.22 (1.0)
	DCM	292, 410, 433	454	451	5.7	0.21 (1.0)
	ACN	290, 408, 428	455	450	5.0	0.21 (1.0)
	DMF	293, 411, 433	457	453	3.6	0.23 (1.0)
	Powder	_	_	482	28	0.51 (0.73), 3.08 (0.19),
	1 OWGOI			102	2.0	18.09 (0.08)
2-F	PhCl	412, 436	458	452	8.8	0.22 (1.0)
	DCM	289, 407, 430	450	447	7.3	0.21 (1.0)
	ACN	288, 404, 425	447	446	5.5	0.22 (1.0)
	DMF	289, 408, 430	450	450	9.6	0.25 (1.0)
	Powder	-	-	466	62	0.49 (0.53), 2.59 (0.35),
	1 00000			100	0.2	16.14 (0.12)

 Table S1
 Optical data of borepinium ions in various solvents.

Table S2Summary of electrochemical data of borepinium ions.

	$E_{1/2}^{\text{red1 }a} / \text{V}(\text{Fc}^{0/+})$	$E_{1/2}^{\text{red2 }a} / \text{V}(\text{Fc}^{0/+})$	LUMO ^b /eV	$E_{ m g}^{ m opt \ c}$ /eV	$HOMO^d / eV$	$E_{ m g}{}^{ m calc}{}^{e}/{ m eV}$
1-H	-1.86	-	-2.94	3.18	-6.12	3.90
1-F	-1.79	-	-3.01	3.18	-6.19	3.80
2-H	-1.39	-1.76	-3.41	2.73	-6.14	3.20
2- F	-1.36	-1.59	-3.44	2.77	-6.21	3.25

^{*a*} $E_{red} = 0.5 (E_{pc} + E_{pa})$; ^{*b*} Determined as $-(4.8 - E_{red}^{-1})$; ^{*c*} Obtained from the absorption onset in acetonitrile; ^{*d*} Determined as LUMO – E_{g}^{opt} ; ^{*e*} Estimated from DFT calculations (B3LYP/6-31g(d,p)) for compounds without PF₆⁻.

DFT results

Figure S13 HOMO/LUMO frontier orbitals of $1-H^+$ and $2-H^{2+}$ from DFT calculations at the B3LYP/6-31G(d,p) level of theory.

Table S3	Calculated NICS	values of bor	epinium	cations.
----------	-----------------	---------------	---------	----------

	NICS(0)	NICS(+1)	NICS(-1)	z +1 <i>t</i> Bu
В	0.97	-1.69	-2.72	
1-H ⁺	0.65	-2.10	-2.57	● B⊕ I
1-F ⁺	0.20	-2.45	-2.92	v strainer
				-1

Figure S14 Experimental absorption spectrum of **1-H** in CH₂Cl₂ and TD-DFT results of **1-H**⁺ at B3LYP/6-31G(d,p) level.

Figure S15 Experimental absorption spectrum of **1-F** in CH₂Cl₂ and TD-DFT results of **1-H**⁺ at B3LYP/6-31G(d,p) level.

Figure S16 Experimental absorption spectrum of **2-H** in CH₂Cl₂ and TD-DFT results of **2-H²⁺** at B3LYP/6-31G(d,p) level.

Figure S17 Experimental absorption spectrum of **2-F** in CH_2Cl_2 and TD-DFT results of **2-F²⁺** at B3LYP/6-31G(d,p) level.

Fig. S18 ¹H NMR spectrum of **3-H** in CDCl₃ at room temperature.

Fig. S19 ¹³C NMR spectrum of **3-H** in CDCl₃ at room temperature.

Fig. S20 APCI mass spectrum of 3-H (positive mode).

Fig. S21 ¹H NMR spectrum of 3-F in CDCl₃ at room temperature.

Fig. S22 ¹³C NMR spectrum of **3-F** in CDCl₃ at room temperature.

Fig. S23 ¹⁹F NMR spectrum of **3-F** in CDCl₃ at room temperature.

Fig. S24 APCI mass spectrum of 3-H (positive mode).

Fig. S25 ¹H NMR spectrum of 4-H in CDCl₃ at room temperature.

Fig. S26 ¹³C NMR spectrum of 4-H in CDCl₃ at room temperature.

Fig. S27 ¹¹B NMR spectrum of 4-H in CDCl₃ at room temperature.

Fig. S28 ¹H NMR spectrum of 4-F in CDCl₃ at room temperature.

Fig. S29 ¹³C NMR spectrum of 4-F in CDCl₃ at room temperature.

Fig. S30 ¹¹B NMR spectrum of **4-F** in CDCl₃ at room temperature.

Fig. S31 ¹⁹F NMR spectrum of 4-F in CDCl₃ at room temperature.

Fig. S32 ¹H NMR spectrum of **1-H** in CD₂Cl₂ at room temperature.

Fig. S33 13 C NMR spectrum of **1-H** in CD₂Cl₂ at room temperature.

Fig. S34 ¹¹B NMR spectrum of **1-H** in CD₂Cl₂ at room temperature.

Fig. S35 19 F NMR spectrum of **1-H** in CD₂Cl₂ at room temperature.

Fig. S36 ESI mass spectrum of 1-H (positive mode).

Fig. S37 ¹H NMR spectrum of 1-F in CD₂Cl₂ at room temperature.

Fig. S38 ¹³C NMR spectrum of **1-F** in CD₂Cl₂ at room temperature.

Fig. S39 ¹¹B NMR spectrum of 1-F in CD₂Cl₂ at room temperature.

Fig. S40 ¹⁹F NMR spectrum of **1-F** in CD₂Cl₂ at room temperature.

Fig. S41 ESI mass spectrum of 1-F (positive mode).

Fig. S42 ¹H NMR spectrum of 1-F-Si in CDCl₃ at room temperature.

Fig. S43 ¹³C NMR spectrum of 1-F-Si in CDCl₃ at room temperature.

Fig. S44 ¹¹B NMR spectrum of 1-F-Si in CDCl₃ at room temperature.

Fig. S45 ¹⁹F NMR spectrum of **1-F-Si** in CDCl₃ at room temperature.

Fig. S46 MALDI-TOF mass spectrum of 1-F-Si (positive mode).

Fig. S47 ¹H NMR spectrum of 2-H in CD₃CN at room temperature.

Fig. S48 ¹³C NMR spectrum of 2-H in CD₃CN at room temperature.

Fig. S49 ¹¹B NMR spectrum of 2-H in CD₃CN at room temperature.

Fig. S50 ¹⁹F NMR spectrum of 2-H in CD₃CN at room temperature.

Fig. S51 ESI mass spectrum of 2-H (positive mode).

Fig. S52 ¹H NMR spectrum of **2-F** in CD₃CN at room temperature.

Fig. S53 ¹³C NMR spectrum of 2-F in CD₃CN at room temperature.

Fig. S54 ¹¹B NMR spectrum of **2-F** in CD₃CN at room temperature.

Fig. S55 ¹⁹F NMR spectrum of **2-F** in CD₃CN at room temperature.

Fig. S56 ESI mass spectrum of 2-F (positive mode).

Fig. S57 ¹H NMR spectrum of **5-H** in CDCl₃ at room temperature.

Fig. S58 ¹³C NMR spectrum of 5-H in CDCl₃ at room temperature.

Fig. S59 MALDI-TOF mass spectrum of 5-H (positive mode).

Fig. S60 ¹H NMR spectrum of 5-F in CDCl₃ at room temperature.

Fig. S61 ¹³C NMR spectrum of 5-F in CDCl₃ at room temperature.

Fig. S62 ¹⁹F NMR spectrum of 5-F in CDCl₃ at room temperature.

Fig. S63 MALDI-TOF mass spectrum of 5-F (positive mode).

Fig. S64 ¹H NMR spectrum of 6-H in CDCl₃ at room temperature.

Fig. S65 ¹¹B NMR spectrum of 6-H in CDCl₃ at room temperature.

Fig. S66 ¹H NMR spectrum of a crude product of 6-F in CDCl₃ at room temperature.

Fig. S67 ¹⁹F NMR spectrum of a crude product of 6-F in CDCl₃ at room temperature.

Cartesian Coordinates for Optimized Structures

Table S4 Coordinates for Optimized Structure of **1-H**⁺ in the ground state (S₀). Total Energy: -1978.7703 Hartree # opt b3lyp/6-31g(d,p) geom=connectivity

CenterAtomicCoordinates (Angstroms)NumberNumberTypeXYZ

1	6	0	5.775411	-0.928593	0.308407
2	6	0	5.808598	0.405648	0.716138
3	6	0	4.658206	1.166647	0.622683
4	6	0	3.431095	0.668736	0.115998
5	6	0	3.397184	-0.701366	-0.302938
6	6	0	4.592771	-1.453585	-0.178448
7	6	0	2.316051	1.633469	0.116620
8	6	Ő	0.941703	1.347751	0.177288
9	6	Ő	0.878390	-1 186413	-0 596239
10	6	Ő	2 239848	-1 448914	-0.828122
11	6	0	2.259010	3 050461	0.187414
12	6	0	1 440997	3 803557	0.107414
12	16	0	0.023003	2 8303/8	0.337780
13	16	0	0.100212	2.050540	1 200220
14	10	0	-0.109212	-2.314082	-1.209220
15	0	0	1.203130	-3.33341/	-1.640014
10	0 5	0	2.422322	-2.000998	-1.3/3000
l / 10	5	0	0.1844/3	0.052850	-0.05/928
18	6	0	-1.421888	0.012230	0.138544
19	1	0	-2.060847	-0.3/6382	1.282385
20	6	0	-3.439309	-0.362532	1.055766
21	6	0	-3.639003	0.066488	-0.226426
22	7	0	-2.380981	0.290173	-0.796159
23	6	0	-4.537935	-0.747590	2.004135
24	6	0	-4.992278	0.226155	-0.860506
25	6	0	-2.213222	0.806587	-2.236917
26	6	0	-2.731114	2.257623	-2.290170
27	6	0	-2.970050	-0.143082	-3.189302
28	6	0	-0.754948	0.824493	-2.716922
29	6	0	-1.436810	-0.837971	2.606941
30	6	0	-2.117356	-0.089529	3.772706
31	6	0	0.057177	-0.506169	2.705206
32	6	0	-1.600139	-2.366525	2.701531
33	1	0	6.654580	-1.559055	0.391986
34	1	0	6.714385	0.841051	1.125330
35	1	0	4.694540	2.179798	0.999278
36	1	0	4.576812	-2.504660	-0.433062
37	1	0	3.539939	3.501793	0.079990
38	1	0	1.375092	4.880738	0.433343
39	1	0	1.151047	-4.262011	-2.386403
40	1	Ő	3 379371	-3 021072	-1 930757
41	1	Ő	-5 419726	-1 032376	1 429218
42	1	õ	-4.286027	-1.601784	2.629657
43	1	õ	-4.825856	0.079122	2.661475
44	1	õ	-5.039912	1.024985	-1.595182
45	1	Ő	-5 322452	-0 697111	-1 348833
46	1	Ő	-5 723190	0 469363	-0.088022
47	1	Ő	-2.097841	2,909420	-1 683818
48	1	0	-2.697641	2.505420	-3 374541
-0 40	1	0	-2.000004	2.000012	-1 947500
τ2 50	1	0	-3.750+91	_0 112080	-3 088200
51	1	0	-7.032002	-0.112009	-3.000203
51	1	0	-2.033230	-1.1/3/02	-3.04/303 17271
52	1	0	-2./30331	0.14408/	-4.21/3/1 2 720/51
33 51	1	0	-0./00240	1.230289	-3./29431
54	1	U	-0.112/28	1.4/0542	-2.1224/3
55 57	1	U	-0.521004	-0.1/222/	-2.//8062
56	1	0	-3.140494	-0.400123	3.966347
57	1	0	-1.547939	-0.287184	4.684055
58	1	0	-2.101856	0.990414	3.599615
59	1	0	0.662435	-1.015378	1.955592

60	1	0	0.400216	-0.865428	3.678964
61	1	0	0.247501	0.566594	2.664039
62	1	0	-1.194153	-2.711253	3.656514
63	1	0	-2.639265	-2.693098	2.647447
64	1	0	-1.047253	-2.861313	1.898400

Table S5 Coordinates for Optimized Structure of $1-F^+$ in the ground state (S_0).Total Energy: -2177.2229 Hartree

opt b3lyp/6-31g(d,p) geom=connectivity

Center	Atomic	Atomic	Coord	dinates (Angst	roms)
Number	Number	Type	Х	Y	Z
1	6	0	5.372628	-0.790874	0.065956
2	6	0	5.396174	0.567273	0.384302
3	6	0	4.234488	1.299380	0.309528
4	6	0	2.994985	0.741306	-0.093309
5	6	0	2.970470	-0.655008	-0.419038
6	6	0	4.187756	-1.374848	-0.316490
7	6	0	1.864275	1.686446	-0.095190
8	6	0	0.498436	1.381925	0.032012
9	6	0	0.451942	-1.201123	-0.563643
10	6	0	1.807824	-1.463302	-0.827855
11	6	0	2.088614	3.108785	-0.108665
12	6	0	0.958990	3.851471	0.061976
13	16	0	-0.437271	2.860887	0.236654
14	16	0	-0.535411	-2.586690	-1.027877
15	6	0	0.826946	-3.440830	-1.638869
16	6	0	1.982674	-2.737517	-1.474117
17	5	0	-0.244860	0.064010	-0.093325
18	6	0	-1.843950	0.013844	0.154927
19	7	0	-2.443743	-0.308006	1.339949
20	6	0	-3.827984	-0.330059	1.153292
21	6	0	-4.071062	0.010554	-0.148111
22	7	0	-2.833605	0.213938	-0.767902
23	6	0	-4.891781	-0.669732	2.157061
24	6	0	-5.443298	0.109931	-0.752454
25	6	0	-2.714335	0.638986	-2.243343
26	6	0	-3.247833	2.079250	-2.372862
27	6	0	-3.491058	-0.373289	-3.111534
28	6	0	-1.271063	0.635363	-2.766701
29	6	0	-1.776012	-0.670401	2.674675
30	6	0	-2.441465	0.139570	3.807958
31	6	0	-0.286888	-0.304861	2.709453
32	6	0	-1.905140	-2.191859	2.874522
33	1	0	4.301994	2.331419	0.622573
34	1	0	4.218670	-2.440231	-0.494835
35	1	0	3.051415	3.572135	-0.273983
36	1	0	0.876811	4.929874	0.080338
37	1	0	0.708256	-4.412028	-2.100208
38	1	0	2.929680	-3.110510	-1.838921
39	1	0	-5.785511	-1.002603	1.628359
40	1	0	-4.607840	-1.479470	2.826534
41	1	0	-5.173376	0.192358	2.770126
42	1	0	-5.527894	0.872923	-1.521492
43	1	0	-5.765099	-0.841913	-1.188363
44	1	0	-6.159070	0.373450	0.027296

45	1	0	-2.606350	2.773508	-1.825222
46	1	0	-3.234015	2.365673	-3.427874
47	1	0	-4.267453	2.207388	-2.011291
48	1	0	-4.570502	-0.333599	-2.989373
49	1	0	-3.151078	-1.392513	-2.908153
50	1	0	-3.280543	-0.155916	-4.161608
51	1	0	-1.315781	0.975918	-3.804400
52	1	0	-0.617874	1.326186	-2.238018
53	1	0	-0.829126	-0.359972	-2.772679
54	1	0	-3.445766	-0.189757	4.060608
55	1	0	-1.834984	0.027045	4.709743
56	1	0	-2.470047	1.204065	3.558156
57	1	0	0.307586	-0.850213	1.976753
58	1	0	0.089223	-0.595787	3.693722
59	1	0	-0.119175	0.766583	2.595766
60	1	0	-1.477756	-2.461980	3.844090
61	1	0	-2.937868	-2.541604	2.859376
62	1	0	-1.353706	-2.729495	2.098513
63	9	0	6.489865	-1.514740	0.167585
64	9	0	6.535672	1.133413	0.788577

Table S6 Coordinates for Optimized Structure of $2-H^{2+}$ in the ground state (S₀).

Total Energy: -3956.3016 Hartree

opt b3lyp/6-31g(d,p) geom=connectivity

Center	Atomic	Atomic	Coor	dinates (Angst	roms)
Number	Number	Туре	Х	Ŷ	Z
1	6	0	-3.417803	-6.053759	0.279646
2	6	0	-2.145254	-5.580250	0.602136
3	6	0	-1.874889	-4.230804	0.467071
4	6	0	-2.825127	-3.288118	0.000784
5	6	0	-4.133261	-3.772535	-0.322571
6	6	0	-4.376217	-5.159801	-0.160959
7	6	0	-2.346399	-1.894070	-0.067632
8	6	0	-3.111030	-0.720750	0.036787
9	6	0	-5.539946	-1.619393	-0.522410
10	6	0	-5.291606	-2.981611	-0.774840
11	6	0	-0.943696	-1.605574	-0.130237
12	6	0	-0.613486	-0.276928	-0.008222
13	16	0	-2.057358	0.684044	0.179147
14	16	0	-7.184198	-1.205612	-1.011735
15	6	0	-7.473706	-2.785691	-1.624462
16	6	0	-6.402041	-3.608642	-1.437814
17	5	0	-4.617612	-0.504977	-0.062200
18	6	0	-5.270690	0.954835	0.186741
19	7	0	-5.811663	1.372790	1.370582
20	6	0	-6.417733	2.615868	1.175973
21	6	0	-6.212817	2.971689	-0.128536
22	7	0	-5.507024	1.931383	-0.742267
23	6	0	-7.185381	3.434986	2.172817
24	6	0	-6.706846	4.252256	-0.740957
25	6	0	-5.073344	1.992237	-2.218374
26	6	0	-3.989901	3.081293	-2.349960
27	6	0	-6.314468	2.267329	-3.092369
28	6	0	-4.467124	0.678972	-2.732941
29	6	0	-5.857764	0.618797	2.708079

30	6	0	-5.433459	1.574304	3.844447
31	6	0	-4.872196	-0.555229	2.750769
32	6	0	-7.283188	0.069500	2.897715
33	ĩ	Ő	-0.900745	-3 878827	0 780147
34	1	Ő	-5 371705	-5 540037	-0 345680
35	1	0	-0.180081	-2.340037	-0.343060
26	1	0	-0.109901 9 414216	-2.302242	-0.30200+
27	1	0	-0.414310	-5.02/622	-2.101043
3/	1	0	-0.399209	-4.629081	-1./952/5
38	l	0	-/.854634	4.109292	1.63//83
39	1	0	-7.811672	2.831589	2.827408
40	1	0	-6.531367	4.048527	2.800078
41	1	0	-6.057205	4.646604	-1.517524
42	1	0	-7.707846	4.136130	-1.169809
43	1	0	-6.768264	5.018549	0.032853
44	1	0	-3.089797	2.787979	-1.803561
45	1	0	-3.725875	3.190149	-3.405326
46	1	Õ	-4 301977	4 059697	-1 986602
47	1	Õ	-6 740023	3 259452	-2 967424
т, ЛQ	1	0	7 00225	1 522702	2.907424
40	1	0	-7.092303	1.323792	-2.099311
49	1	0	-0.020990	2.1/0103	-4.141080
50	l	0	-4.1/5415	0.856582	-3.//1345
51	1	0	-3.565936	0.383193	-2.200707
52	1	0	-5.181698	-0.142631	-2.735418
53	1	0	-6.175021	2.328839	4.091324
54	1	0	-5.275309	0.980328	4.747662
55	1	0	-4.488929	2.070911	3.603714
56	1	0	-5.103197	-1.339330	2.029606
57	1	0	-4.959724	-1.011239	3.740229
58	1	Ő	-3 837556	-0 232271	2 626472
59	1	Õ	-7 345179	-0.439091	3 863636
60	1	Õ	-8 047587	0.847425	2 885146
61	1	0	7 522010	0.654868	2.005140
62	1	0	-7.525919	-0.034606	2.113202
62	0	0	0.700090	0.322121	-0.039238
63	16	0	2.150/51	-0.6460//	-0.165/65
64	6	0	1.035083	1.654887	0.035202
65	6	0	3.204026	0.764464	-0.070658
66	6	0	2.438082	1.941782	-0.022948
67	1	0	0.278326	2.417158	0.163228
68	5	0	4.707656	0.550242	0.065460
69	6	0	2.918442	3.332010	-0.142040
70	6	0	5.629199	1.683852	0.473038
71	6	0	5.307657	-0.944149	-0.099793
72	6	0	4.226457	3.828345	0.166109
73	ő	Ő	1 969808	4 256036	-0.648121
74	6	Õ	5 384980	3 057816	0.652992
75	16	0	7 273307	1 200885	0.052772
75	10	0	5 746069	1.290803	1 275625
70	7	0	5.740000	-1.400297	-1.2/3033
//	1	0	5.445889	-1.89840/	0.8/1015
/8	6	0	4.468991	5.208194	-0.0513/5
/9	6	0	2.240146	5.598993	-0.835/68
80	1	0	0.996653	3.892625	-0.950619
81	6	0	6.502197	3.715438	1.275764
82	6	0	7.572950	2.900969	1.498215
83	6	0	6.147126	-2.803935	-1.043075
84	6	0	5.756551	-0.846819	-2.672275
85	6	0	5.977294	-3.054689	0.290536
86	6	Ō	5.147694	-1.800453	2.379103
87	6	õ	3 512099	6 084236	-0 529355
88	1	Õ	5 463650	5 596/06	0 110122
80	1	0	6 506000	A 752111	1 570177
07	1	U	0.500008	H./JJIII	1.3/91//

90	1	0	8.517762	3.165095	1.954244
91	6	0	6.667720	-3.801753	-2.037137
92	6	0	7.141028	-1.064711	-3.318956
93	6	0	5.541460	0.671520	-2.630654
94	6	0	4.610995	-1.475062	-3.487254
95	6	0	6.303182	-4.365573	0.950081
96	6	0	6.487694	-1.824254	3.140791
97	6	0	4.211597	-2.964020	2.767582
98	6	0	4.417225	-0.510292	2.775798
99	1	0	6.508741	-4.807352	-1.646914
100	1	0	6.159135	-3.757476	-2.998462
101	1	0	7.740878	-3.684474	-2.217126
102	1	0	7.325976	-2.085337	-3.642383
103	1	0	7.205779	-0.433923	-4.208557
104	1	0	7.939563	-0.758729	-2.637173
105	1	0	4.570329	0.960086	-2.227945
106	1	0	5.565859	1.024418	-3.664887
107	1	0	6.332647	1.189431	-2.087838
108	1	0	4.623759	-1.062172	-4.499621
109	1	0	4.687644	-2.559575	-3.572582
110	1	0	3.644164	-1.237292	-3.034691
111	1	0	6.643492	-4.267372	1.977104
112	1	0	5.445876	-5.047410	0.945726
113	1	0	7.111050	-4.851047	0.401051
114	1	0	7.067862	-0.926076	2.917522
115	1	0	6.282287	-1.836218	4.214597
116	1	0	7.108915	-2.689892	2.916167
117	1	0	4.671776	-3.947167	2.711375
118	1	0	3.316194	-2.958748	2.139270
119	1	0	3.894389	-2.817984	3.803111
120	1	0	4.288750	-0.546239	3.860697
121	1	0	4.983637	0.392241	2.557664
122	1	0	3.423554	-0.439492	2.335379
123	1	0	-3.668211	-7.103005	0.395985
124	1	0	-1.381179	-6.252355	0.978891
125	1	0	1.477005	6.255528	-1.240750
126	1	0	3.763607	7.127836	-0.686905

Table S7 Coordinates for Optimized Structure of - F^{2+} in the ground state (S₀).Total Energy: -4353.2056 Hartree

opt b3lyp/6-31g(d,p) geom=connectivity

Center	Atomic	Atomic	Coordinates (Angstroms)		
Number	Number	Туре	Х	Ŷ	Z
1	6	0	3.861397	5.784653	-0.354918
2	6	0	2.551329	5.438809	-0.021081
3	6	0	2.182860	4.113825	-0.010741
4	6	0	3.075605	3.063495	-0.339379
5	6	0	4.422957	3.416591	-0.674177
6	6	0	4.763794	4.792574	-0.662622
7	6	0	2.492723	1.711098	-0.269044
8	6	0	3.166510	0.500507	-0.040657
9	6	0	5.669137	1.158331	-0.613118
10	6	0	5.533805	2.505277	-1.000289
11	6	0	1.072279	1.523968	-0.320807
12	6	0	0.643531	0.241118	-0.078070

13	16	0	2.009440	-0.801388	0.219080
14	16	Ő	7.291162	0.581961	-0.995613
15	6	Õ	7 722532	2,072,059	-1 735918
16	6	Ő	6 711215	2 985040	-1 670034
17	5	0	4 653885	0 163475	-0.080536
19	5	0	5 173064	1 313725	0 327003
10	0 7	0	5.173904	-1.313723	0.327993
19		0	5.055944	-1.003337	1.30/033
20	6	0	6.11016/	-2.9/5156	1.51/9/8
21	6	0	5.908338	-3.43/088	0.246366
22	7	0	5.334816	-2.397147	-0.492509
23	6	0	6.749206	-3.769015	2.620804
24	6	0	6.283081	-4.816656	-0.218163
25	6	0	4.945506	-2.559650	-1.973022
26	6	0	3.762984	-3.545899	-2.049849
27	6	0	6.183530	-3.038014	-2.759731
28	6	0	4,494771	-1.250011	-2.634119
29	6	Ő	5 726244	-0 788713	2 826005
30	6	0 0	5 156403	-1 570769	4 028629
21	6	0	1 885826	0.480066	2 715720
22	0	0	4.003030	0.409900	2.713729
3Z	0	0	/.199000	-0.38/132	5.020557
33	l	0	1.1/3311	3.903149	0.312919
34	1	0	5.777776	5.113841	-0.854170
35	1	0	0.376728	2.310508	-0.581637
36	1	0	8.695148	2.199795	-2.192239
37	1	0	6.801004	3.964383	-2.119530
38	1	0	7.355825	-4.561244	2.181414
39	1	0	7.417352	-3.177411	3.244057
40	1	0	6.009732	-4.244319	3.272819
41	1	Ő	5 623657	-5 217673	-0.982842
42	1	Ő	7 305794	-4 847954	-0.608782
12	1	0	6 233370	5 50/218	0.627123
43	1	0	0.233379	-3.304210	1 565609
44	1	0	2.880803	-5.116955	-1.303098
45	1	0	3.520418	-3./24068	-3.100849
46	1	0	3.964154	-4.512981	-1.591109
47	1	0	6.504478	-4.048032	-2.519243
48	1	0	7.023260	-2.355750	-2.602121
49	1	0	5.939752	-3.025312	-3.824937
50	1	0	4.216903	-1.498920	-3.661532
51	1	0	3.614048	-0.811667	-2.169209
52	1	0	5.291685	-0.509965	-2.687086
53	1	0	5.798894	-2.371365	4.384444
54	1	0	5.031067	-0.874105	4.860735
55	1	Õ	4 172326	-1 985374	3 791251
56	1	Ő	5 225151	1 163582	1 928812
57	1	0	5.004040	1.031872	3 657511
59	1	0	2 8 2 2 1 0 8	0.278084	2 599792
50	1	0	7 202720	0.278084	2.388782
59	1	0	7.292720	0.200302	2 107707
60	1	0	7.809780	-1.242908	3.10//9/
61	l	0	/.543/53	0.228695	2.185121
62	6	0	-0.717001	-0.260335	-0.073558
63	16	0	-2.092475	0.808347	-0.140971
64	6	0	-1.136168	-1.567618	-0.007281
65	6	0	-3.239391	-0.526151	-0.044217
66	6	0	-2.556743	-1.754505	-0.030623
67	1	0	-0.428524	-2.380866	0.081365
68	5	0	-4.721710	-0.207225	0.122834
69	6	0	-3.135718	-3.105541	-0.151611
70	6	Õ	-5.717521	-1.281789	0.516667
71	6	õ	-5 214227	1 329280	0.000112
72	6	0 0	_4 173155	_3 51/158/	0 160305
14	0	U		-5.514504	0.100373

73	6	0	-2.251145	-4.087420	-0.663955
74	6	0	-5.576044	-2.674640	0.660188
75	16	0	-7.326112	-0.781972	1.033240
76	7	0	-5.631124	1.929553	-1.155409
77	7	0	-5.271430	2.266379	0.996144
78	6	0	-4.811785	-4.873533	-0.060000
79	6	0	-2.616557	-5.399764	-0.851482
80	1	0	-1.251453	-3.824722	-0.979364
81	6	0	-6.740132	-3.264906	1.263532
82	6	0	-7.747053	-2.379077	1.510198
83	6	0	-5.936144	3.265140	-0.884795
84	6	0	-5.706156	1.327306	-2.566116
85	6	0	-5.729601	3.470366	0.451588
86	6	0	-4.956408	2.112414	2.495676
87	6	Ő	-3.917043	-5.800301	-0.542987
88	1	Ő	-5 819315	-5 227845	0 104636
89	1	Ő	-6 824311	-4 307275	1 538000
90	1	0 0	-8 709581	-2 585246	1 959039
91	6	0 0	-6 400346	4 321632	-1 845218
92	6	0	-7 081827	1.654457	-3 186007
93	6	0	-5 596536	-0 203067	-2 563381
94	6	0	-4 532347	1 895098	-3 385223
05	6	0	-5 95/1571	1.875078	1 1/1565/
06	6	0	6 270003	2 212227	3 281052
90	6	0	-0.279095	2.212327	2 802477
97	0	0	-3.931000	0.762074	2.0924//
98	0	0	-4.31/343	0.702974	2.030047
99	1	0	-0.103180	3.303343	-1.434347
100	1	0	-3.912319	4.204932	-2.81043/
101	1	0	-7.482004	4.283743	-2.00/318
102	1	0	-7.201490	2.092330	-3.483998
103	1	0	-/.201521	1.050624	-4.088455
104	1	0	-/.889/02	1.38/112	-2.498994
105	1	0	-4.644636	-0.569330	-2.1/8063
106	1	0	-5.654634	-0.527/86	-3.605500
10/	1	0	-6.41/569	-0.6//915	-2.025383
108	1	0	-4.591693	1.512915	-4.40/909
109	l	0	-4.532538	2.984204	-3.439898
110	1	0	-3.577223	1.576910	-2.957880
111	l	0	-6.271810	4.686/2/	2.179935
112	l	0	-5.0560/2	5.410814	1.129135
113	l	0	-6.744862	5.330922	0.629229
114	1	0	-6.924905	1.363496	3.044982
115	1	0	-6.056341	2.180980	4.350943
116	1	0	-6.841513	3.124993	3.089982
117	1	0	-4.317703	4.211036	2.861672
118	1	0	-3.047370	3.136910	2.251194
119	1	0	-3.612509	3.006258	3.920394
120	1	0	-4.167097	0.764780	3.933531
121	1	0	-4.955289	-0.088916	2.625934
122	1	0	-3.339361	0.626069	2.391044
123	9	0	-4.286623	-7.063929	-0.750612
124	9	0	-1.750201	-6.282372	-1.355591
125	9	0	1.677399	6.390910	0.315840
126	9	0	4.231612	7.065007	-0.338196