Supporting information

Covalent organic polymer as an efficient chemosensor for highly selective H_2S detection through proton conduction

Table of contents

S. No	Contents	Page No
Section 1	Materials	S3
Section 2	Synthetic procedure of COP	S3
Section 3	Material characterization	S3
Section 4	Gas sensor fabrication and sensing measurements	S3-S4
Section 5	FT-IR stretching frequencies of benzene-1,3,5-	S4
	tricarboxaldehyde and 6-Hydrazinonicotinic hydrazide	
Figure S1	Wide angle powder XRD of the COP .	S5
Figure S2	Thermogravimetric analysis of the COP.	S5
Figure S3	HRTEM image of the COP showing porous texture of the	S6
	COP.	
Figure S4	BET surface area analysis by N ₂ adsorption and pore size	S6
	distribution of the COP by using the NLDFT methods.	
Table S1	Summary of BET surface area analysis of the COP.	S6
Figure S5	Resistance of the COP based sensor <i>vs</i> operating temperature.	S7
Table S2	Comparison table of H_2S sensing of the COP with other	S7
	reported nanomaterials.	
Section S6	Proposed H ₂ S sensing mechanism of COP through proton	S8
	conduction phenomenon	
Scheme S1	Proposed schematic representation of H ₂ S sensing of COP	S8
	through proton conduction.	
	Supporting References	S11

Materials and Methods

Section 1. Materials

6-Hydrazinonicotinic hydrazide hydrate, benzene-1,3,5-tricarboxaldehyde, acetic acid, dimethyl sulfoxide (DMSO), and all other solvents were purchased from Sigma Aldrich and Merck.

Section 2. Synthetic Procedure of COP

6-Hydrazinonicotinic hydrazide hydrate and benzene-1,3,5-tricarboxaldehyde in ethanol and 6M acetic acid solution were refluxed in 100 mL round bottom flask for 48 h at 90 °C. After that the reaction mixture was filtered and washed with methanol, acetone, dichloromethane, dimethyl sulfoxide and water. The reddish brown solid residue was dried over 80 °C for 24 h. The reddish brown solid **COP** powder was characterized by ¹³C solid state NMR and FT-IR spectroscopy.

Section 3. Material Characterization

Solid state ¹³C NMR spectrum was recorded using 400 MHz solid state NMR spectrometer (JEOL, model: ECX400; proton frequency: 400 MHz). Powder XRD was done on Rigaku SmartLab, Automated Multipurpose X-ray Diffractometer. Thermogravimetric analysis (TGA) was analyzed using Mettler Toledo Thermal Analyzer with heating rate of 10 °C/min. BET surface area was analyzed on Quantachrome, Autosorb iQ2. FT-IR spectra of the **COP** were recorded using Bruker, Tensor-27 FT-IR spectrophotometer. High resolution transmission electron (HRTEM) microscopy analysis was performed using Field Emission Gun-Transmission Electron Microscope 200 kV (model: Tecnai G2, F30). The field-emission scanning electron microscope (Model: Supra 55 Zeiss). For FESEM measurements, the dried samples were coated with gold for subsequent imaging experiments. Atomic force microscopy (AFM) images were taken by drop-casting the samples on mica substrates *via* tapping mode at a scan frequency of 0.65-1.0 Hz and analyzed the data using SmartScan software (model park NX10).

Section 4. Gas Sensor Fabrication and Sensing Measurements

A Corning glass slide with the dimension of $3 \times 3 \times 0.5$ mm was used for the sensor substrate. Two interdigitated Pt electrodes on the top of glass substrate were used to fabricate the sensor. Each Pt electrode consists of 5 fingers ($250 \times 25 \times 1 \mu m$), and the distance between two fingers was 25 μm . The **COP** powder (10 mg) in 3 mL ethanol in a 10 mL beaker was stirred and sonicated for 30 min. After that dispersed solution of the **COP** was directly drop-casted on the interdigitated electrodes coated glass substrate and dried it for the overnight at 120 °C.

The gas sensing experiment was carried out by the dynamic flow-through measurement technique (Scheme 1). The sensor resistance was monitored by Keithley-2612A source meter interfaced with PC at a direct-current (DC) voltage of 2 V. Optimal concentration of H_2S in the chamber was gained by flowing a certain amount (sccm) of synthetic air to a mixing chamber where certain amount (sccm) of test gas (H_2S) was flown. The flow rates of the respective gases were controlled by a separate mass

flow controller, MFC (model: Alicat[®], MC 1slpm, USA). The temperature of the system was controlled by a PID temperature controller (with an accuracy of ± 1 °C). Efficiency of the sensor corresponds to the response% is given by:

Response (%) =
$$\frac{R_g - R_a}{R_a} \times 100$$

Where R_g and R_a are the resistance of the sensor in presence of sensing gas and air.

Section S5. FT-IR stretching frequencies of benzene-1,3,5-tricarboxaldehyde and 6hydrazinonicotinic hydrazide

FT-IR spectrum of benzene-1,3,5-tricarboxaldehyde shows a peak at 1706 cm⁻¹ due to the presence of -C=O stretching mode of -CHO groups. This peak is disappeared in **COP** spectrum due to the formation of Schiff base imine. The disappearance of FT-IR peak at 1706 cm⁻¹ in **COP** suggests the formation of Schiff base polymer.

Figure S1. Wide-angle powder XRD of the COP.

Figure S2.Thermogravimetric analysis of the COP.

Discussion: There is a slight increase of the mass within the temperature of 100-200 °C. The slight increment of mass of sample within the temperature ranges is due to the buoyancy effect in TGA equipment. We impend an object in a fluid, the fluid tends to force the object upwards. Before TGA analysis, we put our sample in the analyzer chamber. The fluid (N_2) tends to force the sample upwards. Now when the analysis begins, the density of the fluid is slightly decreased with increasing the temperature and consequently the hanged sample goes down. Then we recorded these changes as mass increment but they are produced by a small change in the density of the surrounding fluid. This effect becomes less at higher temperature or heating rates.¹⁻³

Figure S3. HRTEM image of the COP showing porous texture of the COP.

Figure S4. BET surface area analysis by N_2 adsorption and pore size distribution of the **COP** by using the NLDFT methods.

Table S1. Summary of BET surface area analysis of the COP

Material	N_2 uptake (cc g ⁻¹)	Langmuir surface	Pore size (nm)	Pore volume (cc g ⁻¹)	
		area (m ² g ⁻¹)			
СОР	94.74	452	17.5	0.29	

Figure S5. Resistance of the **COP** based sensor vs operating temperature.

Table S2.	Comparison	table of	of H ₂ S	sensing	of the	COP	with	other	reported	nanomaterials	based
chemiresis	tive sensor										

S.	Material	Response	Maximum response%	Temp. (°C)	Ref.
No		time			
1	Zn-doped-Fe ₂ O ₃	16 s	23.5 (5 ppm H ₂ S)	175	20 c
	nanowire				
2	Fe ₂ O ₃ @CNT-3.0	30 s	$\sim 9 (100 \text{ ppm H}_2\text{S})$	25 °C	20 d
4	MoSe ₂	15 s	19-20 (5.45 ppm)	200 °C	20 e
5	Au-nanowire	15 min	30-40 (0.5 ppm)	25 °C	20 f
6	SnO ₂ /rGO	2-13 s	60-70 (100 ppm)	22 °C	20 g
	nanocomposites				
7	СОР	9 s	50-60 (200 ppm), 30-40 (50	25 °C	This
			ppm)		work

Section 6. Proposed H₂S sensing mechanism of COP through proton conduction phenomenon

Scheme S1. Proposed schematic representation of H₂S sensing of COP through proton conduction.

Here, we proposed chemiresistive gas sensing mechanism. The **COP** creates a proton transportation channel inside the polymeric chain due to proton transfer of the enol form of hydrazide groups (-C(-OH)N-N=).⁴⁻⁷ After H₂S exposure, the proton transportation channel gradually collapses due to $H_2S\cdots H-N-(C=O)$ interaction.⁸ Obviously, in H₂S environment the stability or percentage of enol form becomes lower due to H₂S···H-N-(C=O) interaction. As a result, the electrical resistance of **COP** increases in presence of H₂S and we get very fast response. We observed that the response time becomes less at higher ppm of H₂S and very fast increment of electrical resistance of the system.

Here, the gas sensing mechanism does not occur only through the acid base interaction, however it also depends on the surface area of adsorbant, pore size and rate of adsorption-desorption of the analytes (here gases).

However, we tried to establish this through the theoretical insight. Density functional theory (DFT) calculations have been performed using Gaussian 09 software. First, the geometry of the truncated **COP** (named COPT) with C(=O)NH-N=) functionality has been optimized as C(=O)NH-N=) groups which mainly involves the sensing mechanism. Then the calculation is performed with a truncated version of **COP**, one molecule of H₂S and CO₂. The energy of COPT before the interaction with H₂S and CO₂ is -737.293 Hartree. Now the total energy of the H₂S-COPT system is lowered (became more negative) value of -1134.694 Hartree than CO₂-COPT with energy of -924.809 Hartree. From the energy calculation study, we conclude that H₂S-COPT system is more energetically stable and favourable system than CO₂-COPT system. So H₂S should have more tendencies to interact with **COP** than CO₂.

Here, we have calculated the pK_a value of **COPT** (AH) using DFT calculation.⁴ The pK_a value of COPT is calculated as high as 51.072. Now COPT behaves almost like an aliphatic hydrocarbons compound due to very high pK_a value. So acid-base type of interaction with external analytes (acidic gases) is insignificant in here.

Calculation of pK_a value:

Gas phase

 $\Delta G^{0}_{(g)}(AH) = \Delta G^{0}_{(sol)}(A^{-}) + \Delta G^{0}_{(sol)}(H^{+}) - \Delta G^{0}_{(sol)}(AH)$ $\Delta G^{0}_{(q)}(AH) = 2.303 RT pK_{a}(AH)$ Direct pK_a(AH) = $\frac{\Delta G^{0}_{(g)}(AH)}{2303 RT}$

Linear correction $pK_a = (\text{Direct } pK_a + 7.281)/1.194$

System	Molecular structure	НОМО	LUMO
COPT (gas phase)	يونو ويونوند. پرونو ويونوند.	-0.223 Hartree	-0.067 Hartree
H₂S-COPT (gas phase)		-0.216 Hartree	-0.062 Hartree
CO₂-COPT (gas phase)	مر موقع درند موجود الدوند	-0.216 Hartree	-0.061 Hartree
Deprotonated COPT (solution phase)	and the second	-0.112 Hartree	-0.045 Hartree
COPT (solution phase)	يونو ونو بدون ونون مدون ونون	-0.224 Hartree	-0.069 Hartree
Deprotonated COPT (gas phase)		-0.021 Hartree	-0.074 Hartree

Summary of all DFT calculations (Basis set = 3-21G, Basis function = B3LYP, Solvation = The conductor-like polarizable continuum model CPCM/water)).

Now, if we include the effect of moisture, H_2S (week acid) generates HS⁻ and S²⁻ after reaction with moisture whereas CO₂ forms H_2CO_3 (week acid) upon reaction with moisture.

$$H_2S + H_2O = HS^- + H_3O^+$$

$$HS^{-} + H_2O = S^{2-} + H_3O^{+}$$

Now HS⁻ will more prone to interact with –HN-C(=O) rather than H₂CO₃. After exposure with H₂S, the proton transportation channel gradually collapses due to H₂S···H-N-(C=O) interaction. In H₂S environment, the stability or percentage of enol form becomes lower due to H₂S···H-N-(C=O) interaction. As a result, the electrical resistance of **COP** increases or suddenly changes in presence of H₂S and very fast response was observed for H₂S.

Supporting References

- 1) P. Gabbott, Principles and applications of thermal analysis. (Ed.), (2008), UK, John Wiley & Sons.
- 2) J. D. Menczel and R. B. Prime, Thermal analysis of polymers: fundamentals and applications. (Eds.). (2014), UK, John Wiley & Sons.
- 3) S. K. Das, P. Bhanja, S. K. Kundu, S. Mondal and A. Bhaumik, *ACS Appl. Mater. Interfaces* 2018, **10**, 28, 23813-23824.
- 4) V. Oklejas, R. H. Uibel, R. Horton and J. M. Harris, Anal. Chem. 2008, 80, 1891-1901.
- 5) M. Mohan, M. N. Satyanarayan and D. R. Trivedi, New J. Chem. 2019, 43, 10413-10428.
- 6) S. Mondal, S.; Y. Agam, R. Nandi and N. Amdursky, Chem. Sci. 2020, 11, 3547-3556.
- 7) S. Rani, M. Kumar, R. Garg, S. Sharma and D. Kumar, *IEEE Sens. J*, 2016, **16**, 2929 2934.
- 8) M. K. Krepps, S. Parkin and D. A. Atwood, Crystal Growth & Design 2001, 1, 291-297.
- 9) C. P. Kelly, C. J. Cramer and D. J. Truhla, J. Phys. Chem. B 2007, 111, 408-422.