Electronic Supplementary Information

Supramolecular optimization of the visual contrast in a colorimetric chemosensing assay that releases resorufin dye

Janeala J. Morsby, Madushani Dharmarwardana, Hannah McGarraugh, and Bradley D. Smith *

Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, United States. *Email: smith.115@nd.edu

Materials and Instrumentation

All the solvents and chemicals were purchased from Sigma-Aldrich, Alfa-Aesar, or VWR international and used without further purification unless otherwise stated. ¹H and ¹³C spectra were recorded on Bruker AVANCE III HD 400, 500 MHz spectrometers. Mass spectrometry (MS) was performed using a Bruker microTOF II spectrometer. Synthesized compounds were purified using Biotage flash purification system with SNAP Ultra flash chromatography cartridges.

N-acetyl-β-D-glucosaminidase (NAG) Stock Solution

A 0.9 mg/mL solution of NAG enzyme (Sigma-Aldrich) from bovine kidney was prepared in 1 M PBS Buffer + 0.1 M BSA and the vendor's guarantee of enzymatic activity was confirmed using the standard chromogenic substrate p-nitrophenyl-N-acetyl- β -D-glucosaminide.

HOCI/ OCI⁻ Stock Solution

Hypochlorite stock solution was prepared using a previously reported method.¹ To a 1500 µL solution of 154 mM NaCl, 250 µL of 10-14% w/w NaOCl was added followed by dropwise addition of 6M HCl to obtain a pH range of 3.92. The concentration of active total chlorine species in solution expressed as $[HOCl]_T$ (where $[HOCl]_T = [HOCl] + [Cl_2] + [Cl_3^-] + [OCl^-]$) in HPLC Grade water was determined by converting all the active chlorine species to OCl⁻ with 0.1 M NaOH and measuring the concentration of OCl⁻. The concentration of OCl⁻ was determined spectrophotometrically at 292 nm ($\epsilon = 362 \text{ M}^{-1} \text{ cm}^{-1}$) with a UV-visible spectrophotometer. Calculation: A = ϵcl ; where l = 1 cm, A = 0.6359, $\epsilon = 362 \text{ M}^{-1} \text{ cm}^{-1}$. Thus, c = 1.76 mM HOCl/ OCl⁻

Figure S1: Absorption spectrum of HOCl/ OCl⁻ for stock solution concentration determination.

Synthesis

The chemosensor **RT-1** and enzyme substrate **NHPO** were synthesized as previously described,^{2,3} and the following ¹HNMR and HR-MS data demonstrate high purity. Tetralactam macrocycles **M1** and **M2** were synthesized as part of previous studies^{4,5} and the purity was confirmed by ¹H NMR.

RF-TBA: Resorufin sodium salt (50 mmol, 10.6 mg) and 40 % wt tetrabutylammonium hydroxide solution (50 mmol, 33 μ L) were dissolved in 50 mL of PBS. The resulting mixture was extracted with chloroform (3 × 50 mL). The combined chloroform layers were dried under vacuum to obtain pure **RF.TBA** as a dark pink solid.

Figure S2. ¹H NMR (500 MHz; DMSO-d₆; Me₄Si) and HR-ESI mass spectrum of **RT-1**.

Figure S3. ¹H NMR (400 MHz; DMSO-d₆; Me₄Si) and HR-ESI mass spectrum of **NHPO**. The broad OH peaks in the ¹H NMR spectrum are due to exchange promoted by adventitious water in the DMSO-d₆.

¹H NMR Titration Data

Figure S4. ¹H NMR titration (500 MHz, $CDCl_3$, 25° C) that added aliquots from a stock solution containing 10 mM **RF** (tetrabutylammonium salt)/ 0.5 mM **M1** to a solution of **M1** (0.5 mM).

Ka Determination by Fluorescence Titration

Previously described titration method was employed.⁶ Stock solutions of the guest, **RF** (1 mM) and host, **M2** (1 mM) were made in pure water. A solution of the guest was placed in a cuvette (10 μ M) and aliquots of the host (**M2**) were added fluorescence spectra were acquired (ex: 540 nm, em: 585 nm). The data was plotted and association constant for **RF** binding to **M2** was determined by non-linear squares fitting of the titration points to a model for 1:1 binding within the Origin software.⁷

Figure S5. (a) Absorption (b) fluorescence emission of 10 μ M RF (tetrabutylammonium salt) and M1 \supset RF in chloroform at 25°C.

Figure S6. Absorption and emission spectra of 10 μ M **RF** (tetrabutylammonium salt) in different organic solvents at 25°C, along with photographs of the solutions.

Figure S7. Fluorescence spectra ($\lambda_{ex} = 550 \text{ nm}$) of a sample, initially containing **RT-1** (50 µM, black line), and 3 minutes after addition of HOCl/OCl⁻ (5 µM, red line), or 3 minutes after a two-step addition sequence of HOCl/OCl⁻ (5 µM) and then **M2** (500 µM) (blue line). In 200 mM PBS, pH 7.4 at 25°C.

Figure S8. Fluorescence spectra ($\lambda_{ex} = 550 \text{ nm}$) of a sample initially containing **NHPO** (50 µM, black line), 30 minutes after addition of 0.9 µg/mL NAG (red line), or 45 minutes after a two-step addition sequence of 0.9 µg/mL NAG and then **M2** (500 µM) (blue line). In 100 mM PBS + 100 µM BSA, pH 7.4 at 25°C.

Figure S9. Absorption and fluorescence emission (ex: 370 nm, em: 390 nm) of a solution containing 15 μ M M2 in the presence and absence of (0.1 μ g/mL NAG enzyme plus ~10 μ M BSA), in water and 25°C. The very small intensity decrease upon protein addition is due to sample dilution, and it appears there is negligible interaction of NAG or BSA with M2.

Molecular Modeling

The semiempirical PM7 method was employed within the MOPAC program. (J. J. P. Stewart, MOPAC; Stewart Computational Chemistry: Colorado Springs, CO, 2008.) The dielectric constant of the solvent was set at 78.4 for water and 25 °C. Solubilizing groups are shortened to hydrogens.

Cartesian Coordinates at the PM7 Level

TOTAL	ENEF	RGY			=		-1	093	8.8	494	11	ΕV			
FINAL	GEON	1ETR	Y OBT	AINED											
EPS=	78.4	PM7	CHAR	GE=-1	ΕF	xyz	z Gl	NOF	RM=0	.1(00	SH	ΙFΊ	2=80)
С	3.	.813	80829	+1	1.	3040	626	07	+1	2	2.7	70	721	.92	+1
С	4.	466	30897	+1	1.	7228	321	02	+1		3.9	9792	237	758	+1
С	3.	.854	45875	+1	-0.	0746	695	38	+1	2	2.4	17	449	974	+1
С	4.	.522	78289	+1	-0.	9883	383	62	+1		3.3	300.	593	312	+1
С	5.	.102	57652	+1	Ο.	8282	242	74	+1	4	1.7	84	637	703	+1
С	5.	.126	26829	+1	-0.	5549	924	81	+1	2	1.4	41	541	.31	+1
С	9.	413	99981	+1	3.	1144	177	39	+1	-2	2.2	242	811	69	+1
С	10.	.046	47500	+1	3.	2081	110	44	+1	- ().9	94	191	12	+1
С	9.	.295	00666	+1	1.	8476	682	91	+1	-2	2.8	885	384	164	+1
С	9.	.857	32272	+1	Ο.	711	766	55	+1	-2	2.2	86	336	584	+1
С	10.	.540	72507	+1	2.	0595	569	50	+1	- (0.3	861	230)24	+1
С	10.	.480	68323	+1	Ο.	8042	209	43	+1	-1	L.C)33	415	507	+1
С	11.	.070	67419	+1	-0.	3412	283	67	+1	- (0.3	397.	538	359	+1
С	11.	.113	61398	+1	2.	100	709	45	+1	().9	955	575	584	+1
С	11.	638	09947	+1	Ο.	9875	538	86	+1	-	1.5	537	329	985	+1
С	11.	632	03900	+1	-0.	2549	910	23	+1	(0.8	39	430	26	+1
С	8.	.601	47273	+1	1.	7819	969	20	+1	_ 4	1.1	41	532	263	+1
С	8.	.087	99392	+1	2.	8972	263	45	+1	- 4	1.7	29	125	531	+1
С	8.	.231	96843	+1	4.	1678	335	64	+1	_ 4	1.1	.00	180	97	+1
С	8.	.872	52893	+1	4.	2696	620	74	+1	-2	2.9	03	430)33	+1
С	3.	.253	27707	+1	-0.	5038	343	41	+1	-	1.2	225	329	922	+1
С	2.	. 697	33434	+1	Ο.	4238	311	34	+1	(0.3	333	419	905	+1
С	2.	.642	42909	+1	1.	8010	013	97	+1	(0.6	594	916	538	+1
С	3.	.151	93730	+1	2.	2136	681	70	+1	-	1.9	33	334	105	+1
С	2.	.180	31863	+1	Ο.	031	794	60	+1	- ().9	947	390)29	+1
С	1.	.641	34407	+1	Ο.	9435	557	54	+1	-1	1.8	802	778	347	+1
С	1.	.585	61273	+1	2.	3212	197	84	+1	-1	1.4	402	268	884	+1
С	2.	.070	68204	+1	2.	7322	232	86	+1	- (0.2	236	517	708	+1
С	2.	.975	68267	+1	3.	6431	156	33	+1	2	2.3	878	389	983	+1
Ν	4.	.101	72557	+1	4.	4518	373	96	+1	-	1.8	886	021	83	+1
С	3.	.988	24233	+1	5.	8099	900	99	+1	-	1.8	374	604	116	+1
0	2.	.969	67542	+1	6.	3430	591	28	+1	2	2.3	3092	221	13	+1
С	5.	.103	37542	+1	6.	6240	041	64	+1	-	1.3	324	442	276	+1
С	6.	.384	85448	+1	6.	1092	267	19	+1	-	1.1	29	029	971	+1
С	7.	.360	39780	+1	6.	909	740	41	+1	().5	536)94	194	+1
С	7.	.077	84819	+1	8.	240	765	81	+1	(0.2	2102	227	773	+1
С	5.	.810	18581	+1	8.	762	729	41	+1	(0.4	50)26	514	+1
С	4.	.817	76714	+1	7.	952	784	54	+1	().9	942	239	942	+1

С	8.71547027	+1	6.40633728	+1	0.19078891	+1
0	9.62541231	+1	7.18453767	+1	-0.08450807	+1
Ν	8.94079512	+1	5.05990192	+1	0.15666159	+1
С	10.22853927	+1	4.56094241	+1	-0.35167652	+1
С	9.81440175	+1	-0.62152972	+1	-2.98973330	+1
N	8.86679137	+1	-1.51732854	+1	-2.30813718	+1
C	8.83586574	+1	-2.83672581	+1	-2.63377849	+1
C	7 92036886	+1	-3 72709992	+1	-1 87215821	+1
C	6 70340644	+1	-3 27154521	+1	-1 36823457	+1
C	5 89690175	+1	-4 14725979	+1	-0 64300816	+1
C	6 28730303	· _ _ 1	-5 /7/20/57	· ⊥ ⊥1	-0 44640047	· _ _ 1
C	7 49606565	· _ _ 1	-5 926//182	· ⊥ ⊥1	-0 9699/227	· _ _ 1
C	9 3157/33/	· ⊥ ⊥ 1	-5 05362756	· ⊥ ⊥ 1	-1 68115676	' ⊥ ⊥ 1
C	2 10110710	⊤⊥ ⊥1	-3.03302730 -1.07000201	⊤⊥ ⊥1	-1.00113070	⊤⊥ ⊥1
N	J.19119740	⊤⊥ ⊥1	-1.97000201	⊤⊥ ⊥1	0.91601706	⊤⊥ ⊥ 1
IN C	4.40001722	+ 1	-2.41900201	+1	0.31091700	±⊥
C	4.59556303	+1	-3./153068/	+1	-0.06988925	+1
0	3.66530444	+1	-4.51044116	+1	0.0/2155/5	+1
0	9.56540770	+1	-3.27990411	+1	-3.51908982	+1
С	6.08430783	+1	0.95544590	+1	-1.20747864	+1
Ν	6.66002226	+1	0.04065272	+1	-0.42496370	+1
С	6.00918089	+1	2.34672912	+1	-0.83380284	+1
0	6.53805765	+1	2.75599878	+1	0.37023477	+1
С	7.18921373	+1	0.44149613	+1	0.73424741	+1
С	7.14156687	+1	1.81290239	+1	1.16304041	+1
С	7.67159566	+1	2.26693632	+1	2.33190105	+1
С	7.84407762	+1	-0.50023230	+1	1.60726775	+1
С	8.38501465	+1	-0.09210632	+1	2.77501733	+1
С	8.32636327	+1	1.31144390	+1	3.19984307	+1
С	5.51597253	+1	0.58717751	+1	-2.47873205	+1
С	4.94527984	+1	1.51739875	+1	-3.27221356	+1
С	4.87300455	+1	2.92795791	+1	-2.87563148	+1
С	5.44012539	+1	3.31441643	+1	-1.59684750	+1
0	4.34109097	+1	3.75401182	+1	-3.61738014	+1
0	8.82536173	+1	1.65456233	+1	4.27007678	+1
Н	4.46014140	+1	2.78371788	+1	4.23936159	+1
Н	4.55184649	+1	-2.04663149	+1	3.03732730	+1
Н	5.61015438	+1	1.14825144	+1	5.69459216	+1
Н	5.64279222	+1	-1.24860737	+1	5.10493309	+1
Н	11.06509406	+1	-1.29519247	+1	-0.92472535	+1
Н	11.10797265	+1	3.04860425	+1	1.49986932	+1
Н	12.06288670	+1	1.02023999	+1	2.54033571	+1
Н	12.07757238	+1	-1.12666835	+1	1.31866048	+1
Н	8.48078401	+1	0.80821591	+1	-4.62198552	+1
Н	7.55675086	+1	2.84170275	+1	-5.67916012	+1
Н	7.81422108	+1	5.04548630	+1	-4.59408984	+1
Н	8.97856143	+1	5.24510619	+1	-2.42709583	+1
Н	2.23997220	+1	-1.01948292	+1	-1.23589298	+1
н	1.25520253	+1	0.64476097	+1	-2.77698197	+1
Н	1.16035048	+1	3.03050105	+1	-2.15043929	+1
Н	2.04594398	+1	3.79118971	+1	0.02934829	+1
Н	2.90765132	+1	3.72837743	+1	3.49225535	+1
Н	2.00585196	+1	4.06961559	+1	2.01658031	+1
					-	

Н	4.88030841	+1	3.94571460	+1	1.48305548	+1
Н	6.62622777	+1	5.09489682	+1	1.45217784	+1
Н	7.85352421	+1	8.87211527	+1	-0.23473706	+1
Н	5.59220871	+1	9.80464951	+1	0.20547888	+1
Н	3.81447609	+1	8.35585677	+1	1.16485293	+1
Н	8.22454506	+1	4.36372020	+1	0.32136289	+1
Н	10.96703491	+1	4.54264697	+1	0.48862585	+1
Н	10.66878882	+1	5.28384485	+1	-1.08673499	+1
Н	10.83345957	+1	-1.08709250	+1	-3.01392265	+1
Н	9.52843975	+1	-0.53460490	+1	-4.06752197	+1
Н	8.27262727	+1	-1.10292388	+1	-1.59182849	+1
Н	6.38000558	+1	-2.24100260	+1	-1.54902425	+1
Н	5.64420075	+1	-6.15715447	+1	0.11590198	+1
Н	7.80038316	+1	-6.96446016	+1	-0.82338215	+1
Н	9.26662705	+1	-5.40591135	+1	-2.09040512	+1
Н	2.34140368	+1	-2.23234920	+1	0.23727619	+1
Н	2.98204237	+1	-2.57440552	+1	1.84340073	+1
Н	5.19314717	+1	-1.72297880	+1	0.21319645	+1
Н	7.62270163	+1	3.29617288	+1	2.65361514	+1
Н	7.88608749	+1	-1.54385129	+1	1.28306589	+1
Η	8.88914855	+1	-0.77683924	+1	3.44729399	+1
Н	5.56946817	+1	-0.46567424	+1	-2.77011967	+1
Н	4.51120938	+1	1.26814086	+1	-4.23614250	+1
Н	5.39113145	+1	4.35269899	+1	-1.31209333	+1

Probe	Analyte	Method of	Reference		
		Detection	Number		
Resorufin	Mercury Hg ²⁺	Chromogenic	8		
Thionocarbonate (RT)					
H_{HO}^{O} OH H_{O}^{O} OH H_{O}^{O} Resorufin β-D-	E. coli	Chromogenic	9		
glucuronide (REG)					
HO, PO HO Novel Probe 1	Alkaline Phosphatase (ALP)	Fluorescence	10		
O ₂ N C C C C C C C C C C C C C C C C C C C	Hydrazine (N ₂ H ₄)	Fluorescence	11		
Resorutin turn on Probe (RTP-1)					
HO OH HO OH NO OH	Biotinylated DNA	Fluorescence	12		
Resorutin-β-D- Galactopyranoside					
$ \begin{array}{c} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ \hline F - Chemodosimeter 1 \end{array} $	Fluorine (F ⁻)	Chromogenic/ Fluorescence	13		
H ₃ C Sulfite Selective Probe	Sulfite (SO3 ²⁻)	Chromogenic/ Fluorescence	14		
H ₃ C R1	Perborate (BO ₃ ⁻) /Hydrazine (N ₂ H ₄)	Chromogenic/ Fluorescence	15,16		
O ₂ N C Re-SS	Polysulfides Re-SS		17		
Ozone Probe 1	Ozone (O ₃)	Chromogenic/ Fluorescence	18		
PC1	Hydrogen Peroxide (H ₂ O ₂)	Fluorescence	19		

Table S1: Abridged collection of enzyme substrates and chemosensors that release resorufin (RF).

	Hydrogen Sulfide (H ₂ S)	Fluorescence	20
ABR			
	Mercury (Hg ²⁺)	Chromogenic/Fluore scence	21
Mercury Probe 1	Hydrogen sulfide	Fluorescence	22
	(H ₂ S), Cysteine (Cys), Homocysteine (Hcy), Glutathione (GSH)		
	Acetyl- cholinesterase	Fluorescence	23
Probe I	v-glutamyl	Fluorescence	24
	cyclotransferase		21
LISA-101			
Probe 3	Epoxy-hydrolase	Fluorescence	25
[•] O ₃ S=O	Sulfatase	Fluorescence	26
Arg Pro-fluoroprobe	Thrombin protease	Fluorescence	27
O Probe 1	Glucose	Fluorescence	28
$\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} $	Reactive Oxygen, Nitrogen (ONOO ⁻)	Fluorescence and Colorimetric	29

Xo of	(ONOO ⁻ and F ⁻)	Fluorescence and Colorimetric	29
Ya K			
Pinkment-OTBS			
Xon Contraction	Esterase and H ₂ O ₂	Fluorescence and Colorimetric	29
Pinkment-OAC			
Probe 1	Carboxylesterase	Fluorescence	30
OF BOOK	H ₂ O ₂	Fluorescence	31
HO R HO OH RESCIECTORS	β-Glucocerebrosi dase	Fluorescence	32
	Cysteine	Fluorescence	33
O_N Cys probe			
	Phosphite and Nickel oxide	Fluorescence	34
AR			

References:

- (1) M. C. Robson, W. G. Payne, F.Ko, M. Mentis, G. Donati, S. M. Shafii, S. Culverhouse, L. Wang, B. Khosrovi, R. Najafi,; et al., *J. Burns Wounds*, 2007, **6**, 80-90.
- (2) M. G. Choi, Y. J. Lee, K. M. Lee, K. Y. Park, T. J. Park and S. Chang, Analyst, 2019, 144, 7263–7269.
- (3) F. Yan, X. Tian, Z. Luan, L. Feng, X. Ma and T. D. James, *Chem. Commun.*, 2019, **55**, 1955–1958.
- J. J. Gassensmith, E. Arunkumar, L. Barr, J. M. Baumes, K. M. Divittorio, J. R. Johnson, B. C. Noll and B. D. Smith, *J. Am. Chem. Soc.*, 2007, **129**, 15054–15059.
- (5) C. F. A. Gómez-Durán, W. Liu, D. Lourdes and B. D. Smith, J. Org. Chem., 2017, 82, 8334–8341.
- (6) W. Liu, E. M. Peck, K. D. Hendzel and B. D. Smith, Org. Lett., 2015, 17, 5268–5271.
- (7) E. M. Peck, W. Liu, G. T. Spence, S. K. Shaw, A. P. Davis, H. Destecroix and B. D. Smith, *J. Am. Chem. Soc.*, 2015, **137**, 6–9.
- (8) M. G. Choi, S. Y. Park, K. Y.Park and S. K. Chang, Sci. Rep. 2019, 9, 1–8.
- (9) G. Magro, R. E. S. Bain, C. A. Woodall, R. L. Matthews, S. W. Gundry and A. P. Davis, *Environ. Sci. Technol.*, 2014, 48, 9624–9631.
- (10) H. Zhang, C. Xu, J. Liu, X. Li, L. Guo and X. Li, *Chem. Commun.*, 2015, **51**, 7031–7034.
- (11) T. Tang, Y. Q. Chen, B. S. Fu, Z. Y. He, H. Xiao, F. Wu, J. Q. Wang, S. R. Wang and X. Zhou, *Chinese Chem. Lett.*, 2016, **27**, 540–544.
- (12) Z. Li, R. B. Hayman and D. R. Walt, J. Am. Chem. Soc., 2008, 130, 12622–12623.
- (13) S. Y. Kim and J. I. Hong, Org. Lett., 2007, 9, 3109–3112.
- (14) M. G. Choi, J. Hwang, S. Eor and S. K. Chang, Org. Lett., 2010, 12, 5624–5627.
- (15) M. G. Choi, J. O. Moon, J. Bae, J. W. Lee and S. K. Chang, Org. Biomol. Chem., 2013, 11, 2961–2965.
- (16) M. G. Choi, S. Cha, J. E. Park, H. Lee, H. L. Jeon and S. K. Chang, Org. Lett., 2010, 12, 1468–1471.
- (17) J. Liu and Z. Yin, Analyst, 2019, 144, 3221–3225.
- (18) Y. Zhang, W. Shi, X. Li and H. Ma, Sci. Rep., 2013, 3, 2–7.
- (19) E.W. Miller, O. Tulyanthan, E.Y. Isacoff and C. Chang, J. Nat. Chem. Biol., 2007, 3, 263–267.
- (20) M. Kim, Y. H. Seo, Y. Kim, J. Heo, W. D. Jang, S. J. Sim and S. Kim, *Chem. Commun.*, 2017, 53, 2275–2278.
- (21) M. S. Thakare and P. M. Yeole, J. Biol. Chem. Chron., 2018, 4, 48–53.
- (22) H. Zhang, L. Xu, W. Chen, J. Huang, C. Huang, J. Sheng and X. Song, Anal. Chem., 2019, 91, 1904–1911.
- (23) K. Cui, Z. Chen, Z. Wang, G. Zhang and D. Zhang, Analyst, 2011, 136, 191–195.
- (24) T. Yoshiya, H. Ii, S. Tsuda, S. Kageyama, T. Yoshiki and Y. Nishiuchi, Org. Biomol. Chem., 2015, 13, 3182–3185.
- (25) M. L. S. O. Lima, M. R. B. Chaves, R. M. C. Do Nascimento, C. C. S. Gonçalves and A. J. J. Marsaioli, Braz. Chem. Soc., 2018, 29, 1149–1156.
- (26) E. L. Smith, C. R. Bertozzi and K. E. Beatty, *ChemBioChem.*, 2014, 15, 1101–1105.
- (27) D. Arian, J. Harenberg and R. Krämer, J. Med. Chem., 2016, 59, 7576–7583.
- (28) X. Gao, X. Li, Q. Wan, Z. Li and H. Ma, *Talanta*, 2014, **120**, 456–461.
- (29) L. Wu, A. C. Sedgwick, X. Sun, S. D. Bull, X. P. He and T. D. James, Acc. Chem. Res., 2019, 52, 2582– 2597.
- (30) Y. Zhang, W. Chen, D. Feng, W. Shi, X. Li, and H. Ma, Analyst 2012, 137, 716–721.
- (31) Z. Han, , X. Liang, X. Ren, L. Shang and Z. Y, Chem. Asian J. 2016, 11, 818–822.
- (32) M. C. Deen, C. Proceviat, X. Shan, L. Wu, D. L. Shen, G. J. Davies, and D. J. Vocadlo, ACS Chem. Biol. 2020, 12, 824–829.
- (33) J. Zhang, Y. Miao, Z. Cheng, L. Liang and C. Liu, Analyst 2020, 145, 1878–1884.
- (34) Y. Chang, M. Liu and J. Liu, Anal. Chem. 2020, 92, 3118–3124