Electronic Supplementary Information

Supramolecular optimization of the visual contrast in a colorimetric chemosensing assay that releases resorufin dye

Janeala J. Morsby, Madushani Dharmarwardana, Hannah McGarraugh, and Bradley D. Smith *

Department of Chemistry and Biochemistry, 251 Nieuwland Science Hall, University of Notre Dame, Notre Dame, United States.
*Email: smith.115@nd.edu

Materials and Instrumentation

All the solvents and chemicals were purchased from Sigma-Aldrich, Alfa-Aesar, or VWR international and used without further purification unless otherwise stated. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ spectra were recorded on Bruker AVANCE III HD $400,500 \mathrm{MHz}$ spectrometers. Mass spectrometry (MS) was performed using a Bruker microTOF II spectrometer. Synthesized compounds were purified using Biotage flash purification system with SNAP Ultra flash chromatography cartridges.

N-acetyl- $\boldsymbol{\beta}$ - \boldsymbol{D}-glucosaminidase (NAG) Stock Solution

A $0.9 \mathrm{mg} / \mathrm{mL}$ solution of NAG enzyme (Sigma-Aldrich) from bovine kidney was prepared in 1 M PBS Buffer +0.1 M BSA and the vendor's guarantee of enzymatic activity was confirmed using the standard chromogenic substrate p-nitrophenyl- N -acetyl- β - D-glucosaminide.

$\mathrm{HOCl} / \mathrm{OCl}^{-}$Stock Solution

Hypochlorite stock solution was prepared using a previously reported method. ${ }^{1}$ To a $1500 \mu \mathrm{~L}$ solution of 154 mM $\mathrm{NaCl}, 250 \mu \mathrm{~L}$ of $10-14 \% \mathrm{w} / \mathrm{w} \mathrm{NaOCl}$ was added followed by dropwise addition of 6 M HCl to obtain a pH range of 3.92. The concentration of active total chlorine species in solution expressed as $[\mathrm{HOCl}]_{\mathrm{T}}$ (where $[\mathrm{HOCl}]_{\mathrm{T}}=[\mathrm{HOCl}]$ $\left.+\left[\mathrm{Cl}_{2}\right]+\left[\mathrm{Cl}_{3}^{-}\right]+\left[\mathrm{OCl}^{-}\right]\right)$in HPLC Grade water was determined by converting all the active chlorine species to OCl^{-} with 0.1 M NaOH and measuring the concentration of OCl^{-}. The concentration of OCl^{-}was determined spectrophotometrically at $292 \mathrm{~nm}\left(\varepsilon=362 \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right)$ with a UV-visible spectrophotometer. Calculation: $\mathrm{A}=\varepsilon \mathrm{cl}$; where $\mathrm{l}=1 \mathrm{~cm}, \mathrm{~A}=0.6359, \varepsilon=362 \mathrm{M}^{-1} \mathrm{~cm}^{-1}$. Thus, $\mathrm{c}=1.76 \mathrm{mM} \mathrm{HOCl} / \mathrm{OCl}^{-}$

Figure S 1 : Absorption spectrum of $\mathrm{HOCl} / \mathrm{OCl}^{-}$for stock solution concentration determination.

Synthesis

The chemosensor RT-1 and enzyme substrate NHPO were synthesized as previously described, ${ }^{2,3}$ and the following ${ }^{1}$ HNMR and HR-MS data demonstrate high purity. Tetralactam macrocycles M1 and M2 were synthesized as part of previous studies ${ }^{4,5}$ and the purity was confirmed by ${ }^{1} \mathrm{H}$ NMR.

RF-TBA: Resorufin sodium salt ($50 \mathrm{mmol}, 10.6 \mathrm{mg}$) and $40 \% \mathrm{wt}$ tetrabutylammonium hydroxide solution (50 mmol , $33 \mu \mathrm{~L}$) were dissolved in 50 mL of PBS. The resulting mixture was extracted with chloroform ($3 \times 50 \mathrm{~mL}$). The combined chloroform layers were dried under vacuum to obtain pure RF.TBA as a dark pink solid.

Figure S2. ${ }^{1} \mathrm{H}$ NMR (500 MHz ; DMSO-d6; Me4Si) and HR-ESI mass spectrum of RT-1.

Figure S3. ${ }^{1} \mathrm{H}$ NMR (400 MHz ; DMSO- $\mathrm{d}_{6} ; \mathrm{Me}_{4} \mathrm{Si}$) and HR-ESI mass spectrum of NHPO. The broad OH peaks in the ${ }^{1} \mathrm{H}$ NMR spectrum are due to exchange promoted by adventitious water in the DMSO- d_{6}.

${ }^{1} \mathbf{H}$ NMR Titration Data

Figure $\mathrm{S} 4 .{ }^{1} \mathrm{H}$ NMR titration $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}\right)$ that added aliquots from a stock solution containing 10 mM RF (tetrabutylammonium salt)/ $0.5 \mathrm{mM} \mathbf{M 1}$ to a solution of $\mathbf{M 1}(0.5 \mathrm{mM})$.

K_{a} Determination by Fluorescence Titration

Previously described titration method was employed. ${ }^{6}$ Stock solutions of the guest, RF (1 mM) and host, M2 (1 mM) were made in pure water. A solution of the guest was placed in a cuvette ($10 \mu \mathrm{M}$) and aliquots of the host (M2) were added fluorescence spectra were acquired (ex: 540 nm , em: 585 nm). The data was plotted and association constant for $\mathbf{R F}$ binding to $\mathbf{M} \mathbf{2}$ was determined by non-linear squares fitting of the titration points to a model for 1:1 binding within the Origin software. ${ }^{7}$

Figure S5. (a) Absorption (b) fluorescence emission of $10 \mu \mathrm{M} \mathbf{R F}$ (tetrabutylammonium salt) and M1 $\supset \mathbf{R F}$ in chloroform at $25^{\circ} \mathrm{C}$.

Figure S6. Absorption and emission spectra of $10 \mu \mathrm{M} \mathbf{R F}$ (tetrabutylammonium salt) in different organic solvents at $25^{\circ} \mathrm{C}$, along with photographs of the solutions.

Figure S7. Fluorescence spectra ($\lambda_{\text {ex }}=550 \mathrm{~nm}$) of a sample, initially containing RT-1 ($50 \mu \mathrm{M}$, black line), and 3 minutes after addition of $\mathrm{HOCl} / \mathrm{OCl}^{-}\left(5 \mu \mathrm{M}\right.$, red line), or 3 minutes after a two-step addition sequence of $\mathrm{HOCl} / \mathrm{OCl}^{-}$ $(5 \mu \mathrm{M})$ and then M2 $(500 \mu \mathrm{M})$ (blue line). In 200 mM PBS, pH 7.4 at $25^{\circ} \mathrm{C}$.

Figure S8. Fluorescence spectra ($\lambda_{\mathrm{ex}}=550 \mathrm{~nm}$) of a sample initially containing NHPO ($50 \mu \mathrm{M}$, black line), 30 minutes after addition of $0.9 \mu \mathrm{~g} / \mathrm{mL}$ NAG (red line), or 45 minutes after a two-step addition sequence of $0.9 \mu \mathrm{~g} / \mathrm{mL}$ NAG and then M2 $(500 \mu \mathrm{M})$ (blue line). In 100 mM PBS $+100 \mu \mathrm{M} \mathrm{BSA}, \mathrm{pH} 7.4$ at $25^{\circ} \mathrm{C}$.

Figure S9. Absorption and fluorescence emission (ex: $370 \mathrm{~nm}, \mathrm{em}: 390 \mathrm{~nm}$) of a solution containing $15 \mu \mathrm{M} \mathbf{~ M} 2$ in the presence and absence of ($0.1 \mu \mathrm{~g} / \mathrm{mL}$ NAG enzyme plus $\sim 10 \mu \mathrm{M} \mathrm{BSA}$), in water and $25^{\circ} \mathrm{C}$. The very small intensity decrease upon protein addition is due to sample dilution, and it appears there is negligible interaction of NAG or BSA with M2.

Molecular Modeling

The semiempirical PM7 method was employed within the MOPAC program. (J. J. P. Stewart, MOPAC; Stewart Computational Chemistry: Colorado Springs, CO, 2008.) The dielectric constant of the solvent was set at 78.4 for water and $25^{\circ} \mathrm{C}$. Solubilizing groups are shortened to hydrogens.

Cartesian Coordinates at the PM7 Level

TOTAL ENERGY
FINAL GEOMETRY OBTAINED
EPS $=78.4$ PM7 CHARGE=-1 EF xyz GNORM=0.100 SHIFT=80

C	3.81380829	+1	1.30462607	+1	2.770721	
C	4.46630897	+1	1.72282102	+1	3.97923758	+1
C	3.85445875	+1	-0.07469538	+1	2.4174497	+1
C	4.52278289	+1	-0.98838362	+1	3.30059312	+1
C	5.10257652	+1	0.82824274	+1	4.7846370	+1
C	5.12626829	+1	-0.55492481	+1	4.44154131	+1
C	9.41399981	+1	3.11447739	+1	-2.24281169	+1
C	10.04647500	+1	3.20811044	+1	-0.9941911	+1
C	9.29500666	+1	1.84768291	+1	-2.88538464	+1
C	9.85732272	+1	0.71176655	+1	-2.286336	1
C	10.54072507	+1	2.05956950	+1	-0.361230	1
C	10.48068323	+1	0.80420943	+1	-1.03341507	1
C	11.07067419	+1	-0.34128367	+1	-0.39753859	+1
C	11.11361398	+1	2.10070945	+1	0.9555758	+1
C	11.63809947	+1	0.98753886	+1	1.53732985	1
C	11.63203900	+1	-0.25491023	+1	0.839430	1
C	8.60147273	+1	1.78196920	+1	-4.141532	+1
C	8.08799392	+1	2.89726345	+1	-4.72912531	1
C	8.23196843	+1	4.16783564	+1	-4.10018097	1
C	8.87252893	+1	4.26962074	+1	-2.90343033	1
C	3.25327707	+1	-0.50384341	+1	1.22532922	+1
C	2.69733434	+1	0.42381134	+1	0.333419	+1
C	2.64242909	+1	1.80101397	+1	0.69491638	+1
C	3.15193730	+1	2.21368170	+1	1.93383405	+1
C	2.18031863	+1	0.03179460	+1	-0.94739029	1
C	1.64134407	+1	0.94355754	+1	-1.802778	1
C	1.58561273	+1	2.32119784	+1	-1.4402688	+1
C	2.07068204	+1	2.73223286	+1	-0.23651708	+1
C	2.97568267	+1	3.64315633	+1	2.37838983	+1
N	4.10172557	+1	4.45187396	+1	1.88602183	+1
C	3.98824233	+1	5.80990099	+1	1.8746041	+1
0	2.96967542	+1	6.34369128	+1	2.30922113	1
C	5.10337542	+1	6.62404164	+1	1.32444276	+1
C	6.38485448	+1	6.10926719	+1	1.12902971	+1
C	7.36039780	+1	6.90974041	+1	0.53609494	+1
C	7.07784819	+1	8.24076581	+1	0.21022773	+1
C	5.81018581	+1	8.76272941		0.45002614	+1
C	4.81776714	+1	7.95278454	+1	0.99423942	

c	8.71547027 +1	$6.40633728+1$	0.19078891
0	$9.62541231+1$	7.18453767 +1	-0.08450807
N	$8.94079512+1$	$5.05990192+1$	0.15666159
C	$10.22853927+1$	4.56094241 +1	-0.35167652
C	$9.81440175+1$	$-0.62152972+1$	-2.98973330
N	$8.86679137+1$	-1.51732854 +1	-2.30813718
C	$8.83586574+1$	$-2.83672581+1$	-2.63377849
C	$7.92036886+1$	$-3.72709992+1$	-1.87215821
C	$6.70340644+1$	-3.27154521 +1	-1.36823457
C	$5.89690175+1$	$-4.14725979+1$	-0.64300816
C	$6.28730303+1$	$-5.47429457+1$	-0.44640047
C	$7.49606565+1$	$-5.92644182+1$	-0.96994227
C	$8.31574334+1$	$-5.05362756+1$	-1.68115676
C	3.19119740 +1	$-1.97800281+1$	0.91807835
N	$4.45861722+1$	$-2.41980201+1$	0.31691706
C	$4.59556303+1$	-3.71530687 +1	-0.06988925
0	3.66530444 +1	$-4.51044116+1$	0.07215575
0	9.56540770 +1	$-3.27990411+1$	-3.51908982
C	$6.08430783+1$	0.95544590 +1	-1.20747864
N	$6.66002226+1$	$0.04065272+1$	-0.42496370
C	$6.00918089+1$	$2.34672912+1$	-0.83380284
\bigcirc	$6.53805765+1$	2.75599878 +1	0.37023477
C	7.18921373 +1	$0.44149613+1$	0.73424741
C	7.14156687 +1	$1.81290239+1$	1.16304041
C	$7.67159566+1$	$2.26693632+1$	2.33190105
C	$7.84407762+1$	$-0.50023230+1$	1.60726775
C	$8.38501465+1$	$-0.09210632+1$	2.77501733
C	8.32636327 +1	1.31144390 +1	3.19984307
c	$5.51597253+1$	$0.58717751+1$	-2.47873205
C	$4.94527984+1$	$1.51739875+1$	-3.27221356
C	$4.87300455+1$	$2.92795791+1$	-2.87563148
C	$5.44012539+1$	$3.31441643+1$	-1.59684750
0	$4.34109097+1$	$3.75401182+1$	-3.61738014
0	$8.82536173+1$	$1.65456233+1$	4.27007678
H	4.46014140 +1	2.78371788 +1	4.23936159
H	$4.55184649+1$	$-2.04663149+1$	3.03732730
H	$5.61015438+1$	$1.14825144+1$	5.69459216
H	$5.64279222+1$	$-1.24860737+1$	5.10493309
H	$11.06509406+1$	$-1.29519247+1$	-0.92472535
H	$11.10797265+1$	$3.04860425+1$	1.49986932
H	12.06288670 +1	$1.02023999+1$	2.54033571
H	$12.07757238+1$	$-1.12666835+1$	1.31866048
H	$8.48078401+1$	$0.80821591+1$	-4.62198552
H	$7.55675086+1$	$2.84170275+1$	-5.67916012
H	$7.81422108+1$	5.04548630 +1	-4.59408984
H	$8.97856143+1$	$5.24510619+1$	-2.42709583
H	2.23997220 +1	-1.01948292 +1	-1.23589298
H	$1.25520253+1$	$0.64476097+1$	-2.77698197
H	1.16035048 +1	$3.03050105+1$	-2.15043929
H	$2.04594398+1$	$3.79118971+1$	0.02934829
H	$2.90765132+1$	$3.72837743+1$	3.49225535
	$2.00585196+1$	$4.06961559+1$	2.01658031

H	$41+1$	$3.94571460+1$	48
H	6.62622777 +1	$5.09489682+1$	1.45217784
H	$7.85352421+1$	$8.87211527+1$	-0.23473706
H	5.59220871 +1	9.80464951 +1	0.20547888
H	$3.81447609+1$	8.35585677 +1	1.16485293
H	$8.22454506+1$	4.36372020 +1	0.32136289
H	$10.96703491+1$	$4.54264697+1$	0.48862585
H	$10.66878882+1$	$5.28384485+1$	-1.08673499
H	$10.83345957+1$	$-1.08709250+1$	-3.01392265
H	$9.52843975+1$	-0.53460490 +1	-4.06752197
H	$8.27262727+1$	$-1.10292388+1$	-1.59182849
H	$6.38000558+1$	$-2.24100260+1$	-1.54902425
H	$5.64420075+1$	$-6.15715447+1$	0.11590198
H	$7.80038316+1$	$-6.96446016+1$	-0.82338215
H	$9.26662705+1$	$-5.40591135+1$	-2.09040512
H	2.34140368 +1	$-2.23234920+1$	0.23727619
H	$2.98204237+1$	$-2.57440552+1$	1.84340073
H	5.19314717 +1	$-1.72297880+1$	0.21319645
H	$7.62270163+1$	3.29617288 +1	2.65361514
H	$7.88608749+1$	$-1.54385129+1$	1.28306589
H	$8.88914855+1$	$-0.77683924+1$	3.44729399
H	5.56946817 +1	$-0.46567424+1$	-2.77011967
H	$4.51120938+1$	$1.26814086+1$	-4.23614250
H	$5.39113145+1$	$4.35269899+1$	-1.31209333

Table S1: Abridged collection of enzyme substrates and chemosensors that release resorufin (RF).

Probe	Analyte	Method of Detection	Reference Number
	Mercury Hg^{2+}	Chromogenic	8
Resorufin β-D- glucuronide (REG)	E. coli	Chromogenic	9
 Novel Probe 1	Alkaline Phosphatase (ALP)	Fluorescence	10
 Resorufin turn on Probe (RTP-1)	Hydrazine $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$	Fluorescence	11
 Resorufin- β-D- Galactopyranoside	Biotinylated DNA	Fluorescence	12
	Fluorine (F^{-})	Chromogenic/ Fluorescence	13
 Sulfite Selective Probe	Sulfite ($\mathrm{SO}_{3}{ }^{2-}$)	Chromogenic/ Fluorescence	14
	Perborate $\left(\mathrm{BO}_{3}{ }^{-}\right)$ /Hydrazine $\left(\mathrm{N}_{2} \mathrm{H}_{4}\right)$	Chromogenic/ Fluorescence	15,16
	Polysulfides	Fluorescence	17
 Ozone Probe 1	Ozone (O_{3})	Chromogenic/ Fluorescence	18
	Hydrogen Peroxide $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$	Fluorescence	19

	Hydrogen Sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$	Fluorescence	20
	Mercury (Hg^{2+})	Chromogenic/Fluore scence	21
	Hydrogen sulfide $\left(\mathrm{H}_{2} \mathrm{~S}\right)$, Cysteine (Cys), Homocysteine (Hcy), Glutathione (GSH)	Fluorescence	22
 Probe 1	Acetylcholinesterase	Fluorescence	23
	γ-glutamyl cyclotransferase	Fluorescence	24
	Epoxy-hydrolase	Fluorescence	25
	Sulfatase	Fluorescence	26
	Thrombin protease	Fluorescence	27
	Glucose	Fluorescence	28
	Reactive Oxygen, Nitrogen $\left(\mathrm{ONOO}^{-}\right)$	Fluorescence and Colorimetric	29

	$\left(\mathrm{ONOO}^{-}\right.$and F^{-})	Fluorescence and Colorimetric	29
	Esterase and $\mathrm{H}_{2} \mathrm{O}_{2}$	Fluorescence and Colorimetric	29
 Probe 1	Carboxylesterase	Fluorescence	30
	$\mathrm{H}_{2} \mathrm{O}_{2}$	Fluorescence	31
но ${ }^{R}$ Res-GlcGcase	β-Glucocerebrosi dase	Fluorescence	32
	Cysteine	Fluorescence	33
	Phosphite and Nickel oxide	Fluorescence	34

References:

(1) M. C. Robson, W. G. Payne, F.Ko, M. Mentis, G. Donati, S. M. Shafii, S. Culverhouse, L. Wang, B. Khosrovi, R. Najafi,; et al., J. Burns Wounds, 2007, 6, 80-90.
(2) M. G. Choi, Y. J. Lee, K. M. Lee, K. Y. Park, T. J. Park and S. Chang, Analyst, 2019, 144, 7263-7269.
(3) F. Yan, X. Tian, Z. Luan, L. Feng, X. Ma and T. D. James, Chem. Commun., 2019, 55, 1955-1958.
(4) J. J. Gassensmith, E. Arunkumar, L. Barr, J. M. Baumes, K. M. Divittorio, J. R. Johnson, B. C. Noll and B. D. Smith, J. Am. Chem. Soc., 2007, 129, 15054-15059.
(5) C. F. A. Gómez-Durán, W. Liu, D. Lourdes and B. D. Smith, J. Org. Chem., 2017, 82, 8334-8341.
(6) W. Liu, E. M. Peck, K. D. Hendzel and B. D. Smith, Org. Lett., 2015, 17, 5268-5271.
(7) E. M. Peck, W. Liu, G. T. Spence, S. K. Shaw, A. P. Davis, H. Destecroix and B. D. Smith, J. Am. Chem. Soc., 2015, 137, 6-9.
(8) M. G. Choi, S. Y. Park, K. Y.Park and S. K. Chang, Sci. Rep. 2019, 9, 1-8.
(9) G. Magro, R. E. S. Bain, C. A. Woodall, R. L. Matthews, S. W. Gundry and A. P. Davis, Environ. Sci. Technol., 2014, 48, 9624-9631.
(10) H. Zhang, C. Xu, J. Liu, X. Li, L. Guo and X. Li, Chem. Commun., 2015, 51, 7031-7034.
(11) T. Tang, Y. Q. Chen, B. S. Fu, Z. Y. He, H. Xiao, F. Wu, J. Q. Wang, S. R. Wang and X. Zhou, Chinese Chem. Lett., 2016, 27, 540-544.
(12) Z. Li, R. B. Hayman and D. R. Walt, J. Am. Chem. Soc., 2008, 130, 12622-12623.
(13) S. Y. Kim and J. I. Hong, Org. Lett., 2007, 9, 3109-3112.
(14) M. G. Choi, J. Hwang, S. Eor and S. K. Chang, Org. Lett., 2010, 12, 5624-5627.
(15) M. G. Choi, J. O. Moon, J. Bae, J. W. Lee and S. K. Chang, Org. Biomol. Chem., 2013, 11, 2961-2965.
(16) M. G. Choi, S. Cha, J. E. Park, H. Lee, H. L. Jeon and S. K. Chang, Org. Lett., 2010, 12, 1468-1471.
(17) J. Liu and Z. Yin, Analyst, 2019, 144, 3221-3225.
(18) Y. Zhang, W. Shi, X. Li and H. Ma, Sci. Rep., 2013, 3, 2-7.
(19) E.W. Miller, O. Tulyanthan, E.Y. Isacoff and C. Chang, J. Nat. Chem. Biol., 2007, 3, 263-267.
(20) M. Kim, Y. H. Seo, Y. Kim, J. Heo, W. D. Jang, S. J. Sim and S. Kim, Chem. Commun., 2017, 53, 22752278.
(21) M. S. Thakare and P. M. Yeole, J. Biol. Chem. Chron., 2018, 4, 48-53.
(22) H. Zhang, L. Xu, W. Chen, J. Huang, C. Huang, J. Sheng and X. Song, Anal. Chem., 2019, 91, 1904-1911.
(23) K. Cui, Z. Chen, Z. Wang, G. Zhang and D. Zhang, Analyst, 2011, 136, 191-195.
(24) T. Yoshiya, H. Ii, S. Tsuda, S. Kageyama, T. Yoshiki and Y. Nishiuchi, Org. Biomol. Chem., 2015, 13, 3182-3185.
(25) M. L. S. O. Lima, M. R. B. Chaves, R. M. C. Do Nascimento, C. C. S. Gonçalves and A. J. J. Marsaioli, Braz. Chem. Soc., 2018, 29, 1149-1156.
(26) E. L. Smith, C. R. Bertozzi and K. E. Beatty, ChemBioChem., 2014, 15, 1101-1105.
(27) D. Arian, J. Harenberg and R. Krämer, J. Med. Chem., 2016, 59, 7576-7583.
(28) X. Gao, X. Li, Q. Wan, Z. Li and H. Ma, Talanta, 2014, 120, 456-461.
(29) L. Wu, A. C. Sedgwick, X. Sun, S. D. Bull, X. P. He and T. D. James, Acc. Chem. Res., 2019, 52, 25822597.
(30) Y. Zhang, W. Chen, D. Feng, W. Shi, X. Li, and H. Ma, Analyst 2012, 137, 716-721.
(31) Z. Han, , X. Liang, X. Ren, L. Shang and Z. Y, Chem. Asian J. 2016, 11, 818-822.
(32) M. C. Deen, C. Proceviat, X. Shan, L. Wu, D. L. Shen, G. J. Davies, and D. J. Vocadlo, ACS Chem. Biol. 2020, 12, 824-829.
(33) J. Zhang, Y. Miao, Z. Cheng, L. Liang and C. Liu, Analyst 2020, 145, 1878-1884.
(34) Y. Chang, M. Liu and J. Liu, Anal. Chem. 2020, 92, 3118-3124

