Electronic Supplementary Information

Strong metal-support interactions enable highly transparent Pt-Mo₂C counter electrodes of bifacial dye-sensitized solar cells

Chunxia Wu,^a Rong Li,^a Yinglin Wang,^{*a} Shuang Lu,^a Jun Lin,^a Yichun Liu,^a and Xintong Zhang^{*a}

^aCenter for Advanced Optoelectronic Functional Materials Research, and Key Lab of UV-Emitting Materials and Technology of Ministry of Education, Northeast Normal University, 5268 Renmin Street, Changchun 130024, China E-mail: wangyl100@nenu.edu.cn; xtzhang@nenu.edu.cn

Experiment

Preparation of counter electrodes: An Mo₂C film was deposited on wellcleaned fluorine-doped tin oxide (FTO) by radio frequency magnetron sputtering. The Mo₂C target (99.9%) was pre-sputtered for 10 min to remove impurities. All of the samples were deposited for 3 min under an Ar atmosphere with a sputtering pressure of 0.8 Pa. The deposition power was maintained at 60 W, and the substrate temperature was 200°C. We then impregnated the sputtered Mo₂C substrates in a chloroplatinic acid/isopropyl alcohol solvent with various concentrations. Finally, the samples were placed in a rapid annealing furnace and annealed at 450°C for 15 min. For comparison, we impregnated FTO into a chloroplatinic acid solution annealed at 450°C for 15 min, which was named IM-Pt. The Mo₂C annealed at 450°C for 15 min was named HT-Mo₂C. HT-Pt was prepared by high-temperature pyrolysis.

Fabrication of DSCs: The cleaned FTO was pre-treated with a TiCl₄ aqueous solution (40 mM) in an oven at 70°C for 35 min. TiO₂ layers with thicknesses of approximately 11 μ m were prepared by screen printing. The TiO₂ layers were sintered at 500°C for 30 min. After the samples were post-treated with a TiCl₄ solution for 20 min and sintered at 500°C, the electrodes were impregnated in an N719 ethanol solution (0.3 mM) for 24 h at room temperature.

Characterization: The morphologies were detected utilizing FEI Quanta 250 field-emission scanning electron microscopy (SEM) and FEI F200talos TEM. The roughness and conductivity of Mo₂C, HT-Mo₂C and HT-Pt were measured by atomic force microscopy (AFM) on a Multimode8 instrument (Busker). We use a Rigaku, D/max-2500 X-ray diffractometer (XRD) with Cu K α radiation ($\lambda = 1.542$ Å) operated at 40 kV and 100 mA to certify the crystal structure of molybdenum carbide. The optic transmittance was obtained on a UV-vis spectrophotometer at 400nm-900nm. The electrochemical characterizations such as Tafel polarization, electrochemical impedance spectroscopy (EIS) were tested employing a ModuLab XM Photoelectrochemical Test System. The voltage range of Tafel polarization test is -1V-1V, and the forward bias of EIS is 0.4V. The photovoltaic properties of cells were measured by a Keithley 2400 source meter from front side and rear side

irradiation under AM 1.5G simulated solar light (ABET Technology, 100 mW cm⁻²). And the simulation of indoor light is achieved by a GCI-0604 LED from Daheng Optics.

Fig. S1 (a) XRD patterns of Mo₂C and Pt-Mo₂C. (b) Raman spectroscopy of Mo₂C

Fig. S2 XRD patterns of W₂C and Pt-Wo₂C.

The Raman results showed clear peaks at 666, 822, 996 cm⁻¹, confirming the formation of Mo₂C. The X-ray diffractionresult displayed characteristic planes of (1 1 1), (2 0 0), (2 2 0), (3 1 1), and (2 2 2) for cubic Mo₂C (PDF#15-0457). The deposition of Pt clusters showed no evident influence on the crystallization of the Mo₂C supports. We observed no diffraction peaks of Pt on the Pt–Mo₂C CEs, which was likely due to the low loading and the small sizes of the Pt clusters.

Fig. S3 Top SEM images of HT-Pt

Fig. S4 (a) Tafel polarization curves and (b) Nyquist plots of different concentrations of chloroplatinic acid. Both experiments were performed with the symmetrical dummy cells with two identical electrodes (CE//iodide/triiodides electrolyte//CE). The inset (b) shows the equivalent circuit model of the symmetrical cells for fitting EIS results.

Table S1 Electrochemical properties fi	rom dummy c	cell with various	concentrations of
Chloroplatinic acid			

Resistance	1mM	3mM	5mM	10mM
$R_s \ (\Omega \ { m cm}^2)$	12.97	12.42	12.24	11.71
$R_{ct} (\Omega \mathrm{cm}^2)$	39.41	22.94	7.89	1.08

Fig. S5 (a) Tafel polarization curves and (b) Nyquist plots of different concentrations of chloroplatinic acid. (c) Tafel polarization curves and (b) Nyquist of (c-d) HT-Pt and Pt-Mo₂C. Both experiments were performed with the symmetrical dummy cells with two identical electrodes (CE//Co²⁺/Co³⁺ electrolyte//CE). The inset (b) shows the equivalent circuit model of the symmetrical cells for fitting EIS results.

Fig. S6 (a) Current density vs time plots under bias voltages of -0.25 V, (b) extracted current density at -0.25 V from multi-cycle Tafel tests (180 cycles), and (c) successive CV (30 cycles) results of of Pt-Mo₂C and HT-Pt.

I-t				CV				
	Initial J	$\operatorname{End} J$	$\mathrm{E}J/\mathrm{I}J$	Initial J	$\operatorname{End} J$	$\mathbf{E} \mathbf{I} / \mathbf{I} \mathbf{I}$		
	(mA cm ⁻²)	(mA cm ⁻²)		(mA cm ⁻²)	(mA cm ⁻²)	EJ/IJ		
HT-Pt	18.30	17.95	98%	-1.00	-0.91	91%		
Pt-Mo ₂ C	18.00	17.85	99%	-1.01	-0.94	93%		

Table S2 Summary of J of I-t and successive CV

Fig. S7 Histogram of PCE for Pt-Mo₂C as CE in DSSCs (a) front irradiation (b) rear irradiation.