Supplementary Information

Simple one-step synthesis of a two-dimensional perovskite consisting of perfluoroalkyl-based ammonium spacers using acetone as the solvent

Naoyuki Nishimura ^{a*}, Masahiro Tojo^b, Yuko Takeoka^{c*}

- ^a Marketing & Innovation, Asahi Kasei Corporation, 2-1 Samejima, Fuji, Shizuoka, 416-8501, Japan.
 Email: nishimura.nj@om.asahi-kasei.co.jp
- ^b Chemistry & Chemical Process Laboratory, Asahi Kasei Corporation, 2767-11 Niihama, Shionasu, Kojima, Kurashiki, Okayama, 711-8510, Japan
- ^c Faculty of Science and Engineering, Sophia University, 7-1 Kioi-cho, Chiyoda-ku, Tokyo, 102-8554, Japan. E-mail: y-tabuch@sophia.ac.jp

Experimental

1. Synthesis of $C_3F_7CH_2NH_3Br$

 $C_3F_7CH_2NH_3Br$, the precursor to the perovskite ($C_3F_7CH_2NH_3$)₂PbBr₄, was synthesized via a reaction between 1*H*,1*H*-perfluorobutylamine ($C_3F_7CH_2NH_2$) and hydrogen bromide (HBr). In this process, aqueous HBr (48 wt%, Wako Chemical) was gradually added to an aqueous solution of $C_3F_7CH_2NH_2$ (>95%, TCI) cooled with ice over a time span of 1 h under a nitrogen atmosphere, followed by continuous stirring of the cooled solution for a further two hours. The water was subsequently evaporated under vacuum and the resulting power was recrystallized from methanol and then washed with diethyl ether. Elemental analysis of the synthesized $C_3F_7CH_2NH_3Br$ was carried out (Table S1) and the results were close to the expected theoretical values for $C_3F_7CH_2NH_3Br$.

	C (%)	H (%)	N (%)
Theoretical	17.2	1.8	5.0
Experimental	17.2	1.5	5.0

Table S1. Results from elemental analysis of C₃F₇CH₂NH₃Br.

2. Synthesis of perovskite $(C_3F_7CH_2NH_3)_2PbBr_4$ films

Samples of the 2D perovskite (C₃F₇CH₂NH₃)₂PbBr₄ were synthesized via the simple spin-coating on substrates with precursor solutions containing C₃F₇CH₂NH₃Br and PbBr₂. These perovskite precursor solutions were prepared by dissolving C₃F₇CH₂NH₃Br at 0.266 M and PbBr₂ at 0.133 M in acetone or DMF. In the case of the acetone-based synthesis process, the precursor solution was cast onto a glass substrate at room temperature with spin-coating at 1000 rpm for 30 s, followed by drying at room temperature. In trials using DMF as the solvent, the solution was heated at 353 K, spin-coated onto the substrate at 2000 rpm for 30 s, and subsequently heated at 313 K or 393 K for 5 min.

3. Synthesis of a perovskite $(C_4H_9NH_3)_2PbBr_4$ film as a reference sample

A sample of $(C_4H_9NH_3)_2PbBr_4$, a conventional 2D perovskite, was synthesized as a reference for comparison with the $(C_3F_7CH_2NH_3)_2PbBr_4$. The precursor $C_4H_9NH_3Br$ was synthesized in the same manner as the $C_3F_7CH_2NH_3Br$ and the elemental analysis results for this material are provided in Table S2. A solution of this precursor in DMF at a concentration of 0.266 M together with PbBr₂ at 0.133 M was heated to 353 K, spin-coated at 2000 rpm for 30 s at room temperature, then heated at 393 K for 5 min. Figure S1 presents the XRD pattern for the as-prepared sample, which confirms the formation of single-phase $(C_4H_9NH_3)_2PbBr_4$ with a layered structure. The estimated *d* value of 13.7 Å for this material is similar to a previously reported value (d = 14.0 Å).¹

	C (%)	H (%)	N (%)
Theoretical	31.2	7.9	9.1
Experimental	31.3	7.6	9.1

Table S2. Results from the elemental analysis of C₄H₉NH₃Br.

Figure S1. The XRD pattern of the synthesized $(C_4H_9NH_3)_2PbBr_4$ film (d = 13.7 Å).

4. Characterization

The ¹H NMR spectra of the precursors were acquired using a 300 MHz instrument (Jeol) and elemental analyses were carried out with a PE2400-II instrument (Perkin Elmer Inc.) at 1148 K. XRD patterns of the as-prepared samples were obtained with an X-ray diffractometer (Rint2000, Rigaku) in conjunction with a Ni-filtered Cu K α target. The optical absorption spectra of the spincoated films were obtained with a UV-vis-NIR spectrophotometer (UV-3100PC, SHIMADZU) at room temperature. Photoluminescence analyses were performed using an F-4500 fluorescence spectrometer (Hitachi) equipped with a Xe lamp and a monochromatic filter. The XRD, the absorption spectra, and the photoluminescence measurement were employed in air.

Reference

1. Y. Takeoka, K. Asai, M. Rikukawa, K. Sanui, Bull. Chem. Soc. Jpn., 2006, 79, 1607-1613.