SUPPORTING INFORMATION

Collective Asymmetric Total Synthesis of (+)-Sinensilactam A, (+)-Lingzhilactone B and (-

)-Lingzhiol: Divergent reactivity of styrene

Da-Wei Zhang ^{a,b}, Hui-Lan Fan ^{a,b}, Wen-Zhao Zhang ^c, Cheng-Ji Li ^{a,b}, San-Zhong Luo ^{c,*}, Hong-Bo Qin ^{a *}

a State Key Laboratory of Photochemistry and Plant Resources in West China, Kunming Institute of Botany, Chinese Academy of Sciences; Yunnan Key laboratory of Natural Medicinal Chemistry, Kunming, 650201, Yunnan, P. R. China. Fax/ Tel: (+86)-871-65238010; E-mail: qinhongbo @mail.kib.ac.cn.

b University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

c Centre of Basic Molecular Science, Department of Chemistry, Tsinghua University, Beijing 100084, China

d. Institute of Chemistry, Chinese Academy of Sciences, Beijing, 100190, China

Table of Contents

II. General Experimental Procedures
Synthesis of Compound 1-25
Synthesis of Compound 29
Synthesis of Compound 310
Synthesis of Compound 411
Synthesis of Compound 512
Synthesis of Compound 613
Synthesis of Compound 814
Synthesis of Compound 915
Synthesis of Compound 1016
Synthesis of Compound 1117
Synthesis of Compound 1218
Synthesis of Compound Sinensilactam A(13)19
Synthesis of Compound Lingzhilactone B(14)20
Synthesis of Compound Lingzhilactone C(15)21
Synthesis of Compound 1621
Synthesis of Compound 1723
Synthesis of Compound 1824
Synthesis of Compound 1925

Synthesis of Compound 202
Synthesis of Compound 212
Synthesis of Compound 22
Synthesis of Compound Lingzhiol(23)2
III Comparison of the Spectra of Natural and Synthetic Compounds
VI NMR Spectra for the Synthesized Compounds
V X-ray for the Synthesized Compounds6
IVI Chiral HPLC chromatograms of
Compound

I. General Information

All reactions were performed with dry solvents under anhydrous conditions, unless otherwise noted. Dry tetrahydrofuran (THF) was distilled over sodium. Dry dichloromethane (DCM) was distilled over calcium hydride. N, N-Dimethylformamide (DMF) and methanol (MeOH) were dried with 4Å molecular sieve without distillation. Reagents were used as received without further purification, unless otherwise stated. Silica gel (200-300 mesh, Qingdao Marine Chemical Ltd., China), light petroleum ether (bp 60–90 °C) and ethyl acetate were used for product purification by flash column chromatography. Melting Point (MP) was determined with a X-4 Taike micro melting point apparatus and was uncorrected. Proton nuclear magnetic resonance (¹H NMR) spectra were recorded on Bruker Avance 400 and 600 spectrometer at 400 MHz and 600 MHz. Carbon-13 nuclear magnetic resonance (¹³C NMR) was recorded on Bruker Avance 400 and 600 spectrometer at 100 and 150 MHz. IR spectra were recorded on a Bruker Tensor 27 FT-IR spectrometer. Mass spectra were recorded on a VG-Auto-Spec-3000 spectrometer. High-resolution mass spectral analysis (HRMS) data were recorded via electron impact mass spectrometry using a time of flight analyzer.

II. General Experimental Procedures

Synthesis of Compound 1

To a solution of 1,4-dimethoxybenzene (10.00 g, 72.46 mmol, 1.0 equiv.) and AlCl₃ (10.60 g, 79.71 mmol, 1.1 equiv.) in DCM (50 mL) at 0 °C were added chloroacetyl chloride (7.50 mL, 94.20 mmol, 1.3 equiv.) dropwise and stirred for 30 min at 0°C and then for 12 h at room temperature. The reaction was poured into a mixture of crushed ice and 21 mL Conc. HCl and stirred for 20 minutes again, the mixture was extracted with DCM (3×80 mL). The combined organic layers were washed with H₂O (2×100 mL), brine (100 mL), dried over Na₂SO₄ and concentrated under reduced pressure to afford crude product. It was crystallized from methanol to afford 1 (13.18 g, 85% yield) as white solid (mp: 84-86°C). R_f = 0.3 (petroleum ether/EtOAc = 7/1); ¹H NMR (400

MHz, CDCl₃): δ 7.40 (d, J = 3.2 Hz, 1H), 7.09 (dd, J = 9.0, 3.2 Hz, 1H), 6.93 (d, J = 9.0 Hz, 1H), 4.78 (s, 2H), 3.90 (s, 3H), 3.79 (s, 3H).¹³C NMR (100 MHz, CDCl₃): δ 191.8, 153.7, 153.5, 124.9, 121.8, 114.2, 113.1, 56.1, 55.8, 51.1; IR (neat):v_{max} (cm⁻¹) = 3100, 2918,1687, 1496, 1457, 1013, 816, 718, 630; HRMS (EIMS) calcd. for C₁₀H₁₁ClO₃ [M]⁺:214.0397, found 214.0396;

Synthesis of Compound 2

To a solution of 1 (6.00 g, 28.03 mmol, 1.0 equiv.) and ethyl 2-oxocyclopentane carboxylate (6.56 g, 42.05 mmol, 1.5 equiv.) in DMF (65 mL) were added Cs₂CO₃ (12.79 g, 39.24 mmol, 1.4 equiv.) and KI (4.65 g, 28.03 mmol, 1.0 equiv.). The mixture was stirred at room temperature for 1 h. The reaction was quenched by addition of H₂O (100 mL), and the mixture was extracted with ethyl acetate (3×80 mL). The combined organic layers were washed with $H_2O(2 \times 100 \text{ mL})$, brine (100 mL), dried over Na₂SO₄ and concentrated under reduced pressure to afford crude product. It was purified by flash chromatography (petroleum ether/EtOAc = 6/1) to afford 2 (8.80 g, 94% yield) as pale yellow oil. $R_f = 0.3$ (Petroleum ether/EtOAc = 4/1); ¹H NMR (400 MHz, CDCl₃) δ 7.27 (d, J = 3.2 Hz, 1H), 7.03 (dd, J = 9.0, 3.2 Hz, 1H), 6.90 (d, J = 9.0 Hz, 1H), 4.16 (q, J = 7.1 Hz, 2H), 3.86 - 3.81 (m, 4H), 3.78 (s, 3H), 3.51 (d, J = 19.3 Hz, 1H). 2.68 - 3.81 (m, 4H), 3.78 (s, 3H), 3.51 (d, J = 19.3 Hz, 1H).2.44 (m, 3H), 2.09 (m, 3H), 1.23 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 215.2, 197.7, 170.8, 153.6, 153.4, 127.0, 121.1, 113.5, 113.1, 61.4, 58.0, 56.0, 55.8, 48.7, 37.8, 33.4, 19.8, 14.0. IR (neat): v_{max} (cm⁻¹) = 2961, 2906, 2836, 1751, 1722, 1671, 1496, 1224, 865, 815. HRMS (EIMS) calcd. for C₁₈H₂₂O₆[M]⁺: 334.1416, found 334.1424;

Photoalkylation: synthesis of chiral-3

Model reaction: An oven-dried 25 mL schlenk tube was charged with primary- tertiary diamine (257 mg, 0.80 mmol, 0.2 equiv.), phenacyl bromide (1.02 g, 4.00 mmol, 1 equiv.) and NaHCO₃(336 mg, 4.00 mmol, 1 equiv.). The tube was purged with a stream of nitrogen, 8 mL of dry CH₃CN (with cyclic β -keto-ester, 16 mmol, 4 equiv.) was added via syringe. The resultant mixture was degassed three times. Then the tube was placed approximately 3 cm to 40W black light bulb (main wavelength: 365 nm) and stirred at room temperature. After the reaction was completed (TLC analysis, about 3 days). Solvent was removed and the residue was purified directly by silica gel column to give the target product (31% yield, 96% *ee*).

An oven-dried 10 mL schlenk tube was charged with primary-tertiary diamine (257 mg, 0.80 mmol, 0.2 equiv.), phenacyl bromide (1.02 g, 4.00 mmol, 1 equiv.), Ru (bpy)₃Cl₂·6H₂O (171 mg, 0.20 mmol, 0.05 equiv.) and NaHCO₃ (336 mg, 4.00 mmol, 1 equiv.) . The tube was purged with a stream of nitrogen, 2 mL of dry CH₃CN (with cyclic β -keto-ester, 1.6 mmol, 4 equiv.) was added via syringe. The resultant mixture was degassed three times. Then the tube was placed approximately 3 cm to 36W CFL and stirred at room temperature. After the reaction was complete (TLC analysis, about 2 days). Solvent was removed and the residue was purified directly by silica gel column to give the target products (71% yield, 99% *ee*). HPLC analysis: Daicel Chiralpak OJ-H, iso-propanol/hexane = 5/95, flow rate = 1.0 mL/min, λ = 254 nm, retention time = 37. 62 min (major) and 40.27 min (minor).

A round-bottomed 2000 mL flask with a magnetic stirring bar was charged with an aqueous solution of 20 % sucrose (260 g) in water (1300 mL) followed by Baker's yeast (56 g) and CuO (4.12 g , 51.49 mmol, 1 equiv.), HCOONH₄ (6.48 g, 102.98 mmol, 2 equiv.). To this resulting grayish solution was added β -keto-ester **4** (10.00 g, 51.49 mmol, 1 equiv.) dropwise. The reaction was vigorously stirred at 30 °C under air for 21 h. The suspension was then filtered through Celite pad. The solid (Baker's yeast, CuO and Celite) were then stirred vigorously with EtOAc for 30 minutes to recover product. The process was repeated until no more product in EtOAc by TLC. The aqueous layer was extracted with EtOAc four times. The combined organic layers were washed with brine, dried over Na₂SO₄, filtered and concentrated under reduced pressure to afford crude product. It was purified by flash column chromatography (Petroleum ether/EtOAc = 40/1) to afford **(R)-4** (4.3 g, 43% yield) as light yellow oil, together with **5a** (4.5 g, 45% yield) as light yellow oil

5a: $R_f = 0.3$ (petroleum ether/EtOAc = 5/1); $[\alpha]_D^{25} = -50.48$ (c = 0.4, CHCl₃); ¹H NM R (400 MHz, CDCl₃) δ 4.17 (q, *J* = 7.1 Hz, 2H), 2.72 (t, *J* = 2.5 Hz, 2H), 2.55 – 2.43 (m, 2H), 2.36 – 2.23 (m, 2H), 2.13 – 1.92 (m, 2H), 1.69 (s, 1H), 1.25 (t, *J* = 7.1 Hz, 3H).¹³C NMR (100 MHz, CDCl₃): δ 213.71, 170.35, 79.85, 70.70, 61.76, 58.74, 38.30, 32.55, 23.11, 19.74;

(**R**)-4: $R_f = 0.2$ (Petroleum ether/EtOAc=3/1); $[\alpha]_D^{25} = +24.41$ (c = 0.21, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 4.28 – 4.15 (m, 2H), 3.00 (d, J = 5.2 Hz, 1H), 2.56 – 2.41 (m, 2H), 2.25 (ddd, J = 13.2, 9.3, 7.0 Hz, 1H), 2.07 – 1.95 (m, 2H), 1.93 – 1.61 (m, 4H), 1.30 (t, J = 7.1 Hz, 3H).¹³C NMR (100 MHz, CDCl₃): δ 174.9, 80.2, 78.3, 70.6, 61.1, 57.0, 32.5, 31.6, 25.3, 20.6, 14.2;

Synthesis of Compound 6

To a solution of (R)-4 (3.44 g, 17.73 mmol, 1.0 equiv.) and aryl boronic acid (3.87 g, 21.28 mmol, 1.2 equiv.) in 1,4-dioxane (60 mL) were added Pd(PPh₃)₄ (616 mg, 0.53 mmol, 0.03 equiv.) and HCOOH (0.417 mL), the mixture was stirred for 10 minutes at room temperature and for 2 h at 30 °C. The suspension was then filtered through Celite and the mixture was extracted with ethyl acetate (3×80 mL). The combined organic layers were washed with H_2O (2 × 100 mL), brine (100 mL), dried over Na₂SO₄ and concentrated at reduced pressure to afford crude product. It was purified by flash chromatography (petroleum ether/EtOAc = 15/1) to afford 6 (4.7 g, 80% yield) as pale yellow oil. $R_f = 0.3$ (petroleum ether/EtOAc = 5/1); 100 % ee. $[\alpha]_D^{25} = -46.88$ (c = 0.21, CHCl₃); HPLC analysis: Daicel Chiralpak AD-H, *iso*- propanol/hexane = 5/95, flow rate = 1.0 mL/min, λ = 254 nm, retention time = 9.45 min (major) and 10.23 min (minor); ¹H NMR (400 MHz, CDCl₃) δ 6.76 (d, J = 2.2 Hz, 2H), 6.65 (d, J = 1.8 Hz, 1H), 5.17 (s, 1H), 5.10 (d, J = 1.4 Hz, 1H), 3.95 (d, J = 7.2 Hz, 2H), 3.77 (d, J = 8.9Hz, 6H), 3.30 (d, J = 14.2 Hz, 1H), 2.81 (d, J = 14.2 Hz, 1H), 2.40 (dd, J = 8.9, 4.2 Hz, 1H), 2.32 - 2.23 (m, 1H), 2.07 (dd, J = 15.5, 5.6 Hz, 1H), 1.85 (dd, J = 11.8, 7.2 Hz, 2H), 1.67 (s, 1H), 1.15 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 214.1, 169.8, 153.3, 151.0, 144.4, 132.3, 119.1, 116.6, 113.0, 111.5, 61.3, 60.8, 56.0, 55.8, 40.1, 37.5, 31.8, 19.4, (cm^{-1}) 14.0; IR (neat):v_{max} = 2957, 2833, 1750, 1720, 1630, 1495, 1218, 1047, 809. HRMS (EIMS) calcd. for C₁₉ H₂₄O₅ [M]⁺: 332.1624, found 332.1626;

Synthesis of Compound 7

To a solution of methyltriphenylphosphonium bromide (25.21 g, 71.82 mmol, 6.0 equiv.) in THF (70 mL) at 0°C was added anhydrous t-BuOK (7.64 g, 68.22 mmol, 5.7 equiv.) under Ar and stirred for 30 min at 0°C and then for 1 h at room temperature. Then, the mixture was re-cooled to 0°C and a solution of 6 (4.00 g, 11.97 mmol, 1.0 equiv.) in THF (40 mL) was added dropwise, the resulted mixture was stirred for another 3 h. The reaction was quenched by addition of cold H₂O (100 mL), and the mixture was extracted with ethyl acetate (3×80 mL), washed sequentially with H₂O (2 \times 100 mL), brine (100 mL), dried over Na₂SO₄ and concentrated under reduced pressure to afford crude product. It was purified by flash chromatography (Petroleum ether/EtOAc = 30/1) to afford 7 (3.19 g, 81% yield) as colorless oil. R_f = 0.4 (petroleum ether/EtOAc = 10/1); $[\alpha]_D^{25}$ = +18.22 (c = 0.11, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.74 (d, J = 1.0 Hz, 2H), 6.65 (s, 1H), 5.14 (d, J = 16.1 Hz, 2H), 5.04 - 4.99 (m, 2H),3.89 - 3.84 (m, 1H), 3.77 (d, J = 10.9 Hz, 6H), 3.70 - 3.64 (m, 1H), 3.32 (d, J = 14.2Hz, 1H), 2.58 (d, J = 14.2 Hz, 1H), 2.34 – 2.25 (m, 3H), 1.68 – 1.58 (m, 3H), 1.11 (t, J = 7.1 Hz, 3H). 13 C NMR (100 MHz, CDCl₃): δ 174.3, 155.3, 153.3, 150.9, 145.9, 133.1, 117.8, 116.4, 112.6, 111.4, 107.8, 60.3, 56.1, 56.0, 55.7, 45.0, 34.4, 33.4, 23.9, 13.8. IR $(neat):v_{max}$ (cm⁻¹) = 2978, 2953, 2832, 1723, 1645, 1495, 1219, 1047, 806. HRMS (EIMS) calcd. for C₂₀H₂₆O₄ [M]⁺: 330.1 831, found 330.1832;

To a solution of SeO₂ (2.69 g, 24.24 mmol, 5.0 equiv.) in DCM (50 mL) at 0°C was added t-BuOOH (15.15 mL, 4 M in DCM, 60.60 mmol, 5.0 equiv.) and stirred for 30 min at 0°C, and a solution of 7 (4.00 g, 12.12 mmol, 1.0 equiv.) in DCM (35 mL) was added. After being warmed to room temperature, the mixture was stirred for 5 h. The reaction was quenched by addition of saturated aqueous Na₂S₂O₃ (100 mL), and the mixture was extracted with DCM (3×80 mL). The combined organic layers were washed with brine (100 mL), dried over Na₂SO₄ and concentrated under reduced pressure to afford crude product. It was purified by flash chromatography (Petroleum ether/EtOAc = 3/1) to afford 8 (2.89 g, 69% yield) as colorless oil. R_f = 0.3 (petroleum ether/EtOAc = 2/1); $[\alpha]_D^{25} = -20.98$ (c = 0.38, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.74 (d, J = 1.5 Hz, 2H), 6.63 (s, 1H), 5.33 (dd, J = 42.4, 1.8 Hz, 2H), 5.12–5.05 (m, 2 H), 4.38 (s, 1H), 3.90 (dq, J = 10.8, 7.1 Hz, 1H), 3.78 – 3.69 (m, 7H), 3.30 (d, J = 14. 1 Hz, 1H), 2.63 (d, J = 14.1 Hz, 1H), 2.34 (ddd, J = 12.9, 6.6, 4.1 Hz, 1H), 2.02 – 1.95 (m, 1H), 1.68 - 1.59 (m, 2H), 1.50 (ddd, J = 13.1, 10.3, 6.5 Hz, 1H), 1.13 (t, J = 7.1 Hz, 3H).¹³C NMR (100 MHz, CDCl₃): δ 174.1, 157.1, 153.3, 150.8, 145.3, 132.8, 118.3, 116.4, 112.7, 111.5, 75.2, 60.7, 56.0, 55.7, 54.5, 45.7, 34.0, 30.0, 13.8. IR (neat):v_{max} $(cm^{-1}) = 3436, 2940, 2833, 1723, 1580, 1496, 1218, 884, 807.$ HRMS (EIMS) calcd. for C₂₀H₂₆O₅ [M]⁺: 346.1780, found 346.1774;

To a solution of **8** (3.40 g, 9.82 mmol, 1.0 equiv.) in DCM (45 mL) at 0°C were added $VO(acac)_2$ (779 mg, 2.94 mmol, 0.3 equiv.) and TBHP (7.36 mL, 4 M in hexane, 29.46

mmol, 3.0 equiv.) and stirred for 30 min at 0°C. After being warmed to room temperature, the mixture was stirred for 4 h. The reaction was guenched by addition of saturated aqueous Na₂S₂O₃ (80 mL) and the mixture was extracted with DCM (3×60 mL). The combined organic layers were washed sequentially with saturated aqueous Na₂CO₃ (80 mL), brine (80 mL), dried over Na₂SO₄ and concentrated under reduced pressure to afford crude product. It was purified by flash chromatography (Petroleum ether/EtOAc = 3/1) to afford 9 (2.91 g, 82% yield) as colorless oil. R_f = 0.3 (Petroleum ether/EtOAc = 2/1); $[\alpha]_D^{25} = -61.40$ (c = 0.17, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.74 (d, J = 1.3 Hz, 2H), 6.61 (s, 1H), 5.08 (d, J = 9.7Hz, 2H), 4.14 - 4.04 (m, 1H), 3.93 - 3.85 (m, 1H), 3.77 - 3.69 (m, 7H), 3.21 (d, J = 14.2 Hz, 1H), 3.09 (d, J = 4.4 Hz, 1H), 2.77 (d, J = 4.4 Hz, 1H), 2.61 (d, J = 14.2 Hz, 1H), 2.49 – 2.41 (m, 1H), 2.14 – 2.04 (m, 1H), 1.91 (d, J = 9.7 Hz, 1H), 1.67 – 1.58 (m, 2H), 1.12 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): δ 171.1, 153.3, 150.7, 144.3, 132.4, 118.4, 116.4, 112.8, 111.6, 70.0, 68.2, 60.6, 56.0, 55.7, 51.8, 47.3, 42.0, 32.7, 27.3, 13.9. IR (neat):v_{max} $(cm^{-1}) = 3474, 2939, 2833, 1727, 1580, 1492, 1216, 1069, 884, 807.$ HRMS (EIMS) calcd. for C₂₀H₂₆O₆ [M]⁺: 362.1729, found 362.1730;

To a solution of **9** (2.10 g, 5.80 mmol, 1.0 equiv.) in DCM (45 mL) at 0°C was added Dess-Martin reagent (4.91 g, 11.60 mmol, 2.0 equiv.) under Ar and stirred for 30 min at 0°C. After being warmed to room temperature, the mixture was stirred for 4 h. The

reaction was quenched by addition of saturated aqueous Na₂S₂O₃ (60 mL) and the mixture was extracted with DCM (3 × 50 mL). The combined organic layers were washed with brine (60 mL), and dried over Na₂SO₄ and concentrated under reduced pressure to afford crude product. It was purified by flash chromatography (Petroleum ether/EtOAc = 6/1) to afford **10** (1.77 g, 85% yield) as colorless oil. R_f= 0.3 (petroleum ether/EtOAc = 3/1); $[\alpha]_D^{25} = +3.07$ (c = 0.38, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.76 (s, 2H), 6.67 (s, 1H), 5.15 (d, *J* = 19.3 Hz, 2H), 3.94 – 3.88 (m, 1H), 3.82 – 3.74 (m, 7H), 3.14 (dd, *J* = 14.3, 10.3 Hz, 2H), 3.01 (d, *J* = 6.3 Hz, 1H), 2.76 (d, *J* = 14.3 Hz, 1H), 2.55 – 2.47 (m, 2H), 2.39 – 2.30 (m, 1H), 2.14 – 2.07 (m, 1H), 1.13 (t, *J* = 7.1 Hz, 3H).¹³C NMR (100 MHz, CDCl₃): δ 212.4, 170.9, 153.4, 150.7, 143.6, 132.0, 119.0, 116.4, 113.0, 111.6, 64.1, 61.1, 56.0, 55.7, 50.0, 40.1, 34.4, 26.4, 13.9. IR (neat):v_{max} (cm⁻¹) = 2938, 2833, 1752, 1727, 1580, 1492, 1217, 1045, 875, 805. HRMS (EIMS) calcd. for C₂₀H₂₄O₆ [M]⁺: 360.1573, found 360.1582;

Synthesis of Compound 12

To a solution of **10** (2.60 g, 7.22 mmol, 1.0 equiv.) in DCM (27 mL) at 0°C was added $BF_3 \cdot Et_2O$ (1.78 mL, 14.44 mmol, 2.0 equiv.) under Ar, the mixture was stirred at 0°C for 1 h. The reaction was quenched by addition of saturated aqueous NaHCO₃ (60 mL), and the mixture was extracted with DCM (3 × 50 mL). The combined organic layers were washed with brine (60 mL), dried over Na₂SO₄ and concentrated under reduced pressure to afford crude product which was used in next step without further purification. $R_f = 0.4$ (Petroleum ether/EtOAc = 1/1);

To a solution of the crude **11** in MeOH (27 mL) at 0°C was added NaBH₄ (301 mg, 7.94 mmol, 1.1 equiv.), the mixture was stirred at 0°C for 10 min. To a solution were added NaOH (346 mg, 8.66 mmol, 1.2 equiv.), the mixture was stirred at 0°C for 30 min. The

reaction was quenched by addition of saturated aqueous NH₄Cl (60 mL), and the mixture was extracted with ethyl acetate (3 × 50mL). The combined organic layers were washed with H₂O (2 × 60 mL), brine (60 mL), dried over Na₂SO₄ and concentrated under reduced pressure to afford crude product. It was purified by flash chromatography (Petroleum ether/EtOAc = 3/2) to afford **12** (1.58 g, 61% yield) as colorless oil. R_f = 0.3 (Petroleum ether/EtOAc = 1/2); 99.96 % *ee*. $[\alpha]_D^{25}$ = -9.82 (c = 0.17, CHCl₃); HPLC analysis: Daicel Chiralpak AD-H, *iso*-propanol/hexane = 20/80, flow rate = 1.0 mL/min, λ = 254 nm, retention time = 26.89 min (major) and 13.98 (minor). ¹H NMR (400 MHz, CDCl₃) δ 6.86 – 6.80 (m, 3H), 6.30 (s, 1H), 4.36 (d, *J* = 9.6 Hz, 1H), 4.21 (s, 1H), 4.07 (d, *J* = 9.6 Hz, 1H), 3.82 (s, 3H), 3.77 (s, 3H), 3.37 (dd, *J* = 17.1, 1.0 Hz, 1H), 2.98 (dd, *J* = 17.1, 1.4 Hz, 1H), 2.36 – 2.30 (m, 1H), 2.18 – 2.11 (m, 1H), 2.04 – 1.92 (m, 2H), 1.72 (s, 1H).¹³C NMR (100 MHz, CDCl₃): δ 182.6, 153.3, 152.1, 143.2, 126.6, 124.2, 115.0, 113.8, 112.0, 78.3, 76.0, 71.3, 58.8, 55.8, 47.1, 35.6, 35.5. IR (neat):v_{max} (cm⁻¹) = 3445, 2938, 2833, 1747, 1580, 1497, 1216, 1145, 890. HRMS (EIMS) calcd. for C₁₈H₂₀O₅ [M]⁺:316.1311, found 316.1302;

Synthesis of Compound 13

To a solution of **12** (272 mg, 0.860 mmol, 1.0 equiv.) in DCM (4 mL) at 0°C were added pyridine (345 μ L, 4.300 mmol, 5.0 equiv.) and Tf₂O (289 μ L, 1.720 mmol, 2.0 equiv.) under Ar, the mixture was stirred at 0°C for 15min. The reaction was quenched by addition of H₂O (20 mL) and the mixture was extracted with DCM (3 × 15 mL). The combined organic layers were washed with brine (20 mL), dried over Na₂SO₄ and concentrated under reduced pressure to afford crude product. It was purified by flash chromatography (Petroleum ether/EtOAc = 6/1) to afford **13** (327 mg, 85% yield) as white solid (mp: 129-131°C). R_f = 0.4 (Petroleum ether/EtOAc = 4/1); [α]_D²⁵ = -46.58 (c = 0.23, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 6.86 – 6.81 (m, 3H), 6.29 (s, 1H), 5.26 (s, 1H), 4.41 (d, *J* = 10.0 Hz, 1H), 4.17 (d, *J* = 10.0 Hz, 1H), 3.79 (d, *J* = 16.9 Hz, 6H), 3.51 (dd, *J* = 17.3, 1.7 Hz, 1H), 2.97 (dd, *J* = 17.3, 1.7 Hz, 1H), 2.47 – 2.43 (m, 1H), 2.34 – 2.26 (m, 1H), 2.20 – 2.12 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 180.8, 153.3, 152.2, 142.7, 125.6, 123.9, 115.0, 114.3, 112.2, 94.4, 75.5, 69.8, 59.0, 55.8, 55.7, 46.3, 34.7, 34.0. IR (neat):v_{max} (cm⁻¹) = 2947, 2838, 1778, 1580, 1503, 1409, 1209, 1155, 882, 821. HRMS (EIMS) calcd. for C₁₉H₁₉F₃O₇S [M]⁺: 448.0804, found 448.0807;

Synthesis of Compound 14

To a solution of **13** (327 mg, 0.729 mmol, 1.0 equiv.) in DMF (4 mL) at 0°C were added 18-crown-6 (192 mg, 0.729 mmol, 1.0 equiv.) and NaNO₂ (309 mg, 3.645 mmol, 5.0 equiv.). After being warmed to room temperature, the mixture was stirred for 5 h. The reaction was quenched by addition of H₂O (20 mL) and the mixture was extracted with ethyl acetate (3 × 15 mL). The combined organic layers were washed with H₂O (2 × 20 mL), brine (20 mL), dried over Na₂SO₄ and concentrated under reduced pressure to afford crude product. It was purified by flash chromatography (Petroleum ether/EtOAc = 3/2) to afford **14** (154 mg, 67% yield) as pale yellow oil.

 $\begin{aligned} R_{\rm f} &= 0.4 \text{ (petroleum ether/EtOAc} = 2/3); [\alpha]_{\rm D}^{25} &= -81.48 \text{ (c} = 0.1, \text{CHCl}_3); ^{1}\text{H NMR (400} \\ \text{MHz, CDCl}_3) \delta 6.82 &- 6.78 \text{ (m, 3H)}, 6.44 \text{ (s, 1H)}, 4.87 \text{ (d, } J &= 9.5 \text{ Hz, 1H)}, 4.24 \text{ (t, } J &= 6.0 \text{ Hz, 1H}), 4.13 \text{ (d, } J &= 9.5 \text{ Hz, 1H}), 3.79 \text{ (d, } J &= 18.8 \text{ Hz, 6H}), 3.38 \text{ (dd, } J &= 17.1, 1.7 \text{ Hz, 1H}), 2.94 \text{ (dd, } J &= 17.1, 1.4 \text{ Hz, 1H}), 2.45 &- 2.39 \text{ (m, 1H)}, 2.11 &- 2.03 \text{ (m, 2H)}, 1.88 \\ &- 1.73 \text{ (m, 2H)}. \ ^{13}\text{C NMR (100 MHz, CDCl}_3): \delta 182.8, 153.3, 152.1, 139.4, 131.3, 124.5, 115.1, 113.4, 112.0, 78.6, 71.8, 68.7, 58.7, 55.8, 46.8, 35.3, 34.7. \text{ IR (neat)}:v_{\text{max}} \text{ (cm}^{-1}) &= 3436, 2935, 2833, 1738, 1579, 1499, 1216, 1151, 878. \text{ HRMS (EIMS) calcd.} \end{aligned}$

Synthesis of Compound 15

To a solution of **14** (154 mg, 0.487 mmol, 1.0 equiv.) in *t*-BuOH (2.5 mL) and THF (1 mL) at room temperature were added NMO (50% in H₂O, 113 mg, 0.974 mmol, 2.0 equiv.) and OsO_4 (2% in H₂O, 607 µL, 0.048 mmol, 0.1 equiv.), the mixture was stirred at room temperature for 13 h. The reaction was quenched by addition of saturated aqueous $Na_2S_2O_3$ (15 mL), and the mixture was extracted with ethyl acetate (3 × 10 mL). The combined organic layers were washed with brine (15 mL), dried over Na_2SO_4 and concentrated under reduced pressure to afford crude product which was used in next step without further purification.

To a solution of the product made above in DCM (3.5 mL) at 0°C was added Pb(O Ac)₄ (215 mg, 0.487 mmol, 1.0 equiv.) under Ar, the mixture was stirred at 0°C for 10 min. The reaction was quenched by addition of H₂O (15 mL) and the mixture was extracted with DCM (3 × 10 mL). The combined organic layers were washed with brine (15 mL), dried over Na₂SO₄ and concentrated under reduced pressure to afford crude product. It was purified by flash chromatography (Petroleum ether/EtOAc = 1/1) to afford **15** (127 mg, 75% yield) as colorless oil. R_f= 0.4 (petroleum ether/EtOAc = 1/2); 99.2 % *ee*. [α]_D²⁵ = +156.66 (c = 0.1, CHCl₃); HPLC analysis: Daicel Chiralpak OJ-H, *iso*-propanol/hexane = 20/80, flow rate = 1.0 mL/min, λ =254 nm, retention time = 42.16 min (major) and 29.15 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 9.61 (s, 1H), 7.29 (d, *J* = 3.2 Hz, 1H), 7.06 (dd, *J* = 9.0, 3.2 Hz, 1H), 6.89 (d, *J* = 9.1 Hz, 1H), 4.99 (s, 2H), 4.69 (dd, *J* = 10.1, 4.9 Hz, 1H), 3.88 (s, 3H), 3.75 (d, *J* = 13.3 Hz, 4H), 3.43 (d, *J* = 19.7 Hz, 1H), 2.16 – 2.12 (m, 2H), 2.06 – 2.00 (m, 1H), 1.84 – 1.76 (m, 1H), 1.70

-1.59 (m, 2H). ¹³C NMR (100 MHz, CDCl₃): δ 203.0, 199.0, 181.1, 154.3, 153.4, 125.3, 122.4, 113.3, 113.2, 66.8, 63.1, 56.0, 55.8, 55.0, 49.5, 34.6, 30.8. IR (neat):v_{max} (cm⁻¹) = 3435, 2942, 2840, 1745, 1715, 1653, 1578, 1493, 1279, 1225, 1167, 1047, 883, 817. HRMS (EIMS) calcd. for C₁₈H₂₀O₇ [M]⁺: 348.1209, found 348.1205;

Synthesis of Compound 16

To a solution of 15 (124 mg, 0.356 mmol, 1.0 equiv.) and γ -lactam-hemiaminal B (180 mg, 1.780 mmol, 5.0 equiv.) in DCM (11 mL) was added *p*-TsOH (6 mg, 0.036 mmol, 0.1 equiv.), and the resultant mixture was stirred at 40°C for 5 h. The reaction was quenched by addition of saturated aqueous NaHCO₃ (10 mL), and the mixture was extracted with DCM (3×7 mL). The combined organic layers were washed with brine (10 mL), dried over Na₂SO₄ and concentrated under reduced pressure to afford crude product. It was purified by flash chromatogramphy (Petroleum ether/EtOAc = 1/2) to afford 16 (101 mg, 66% yield) as white solid (mp: 236-238°C). $R_f = 0.4$ (petroleum ether/EtOAc = 1/2); $[\alpha]_D^{25} = +18.72$ (c = 0.1, DMSO); ¹H NMR (400 MHz, DMSO-d₆) δ 7.26 (d, J = 2.8 Hz, 1H), 7.20 – 7.14 (m, 2H), 6.44 (d, J = 3.3 Hz, 1H), 5.45 (d, J = 3.2 Hz, 1H), 5.25 (dd, J = 6.2, 3.3 Hz, 1H), 4.31 (dd, J = 12.0, 5.6 Hz, 1H), 4.23 (d, J= 10.1 Hz, 1H), 3.87 (s, 3H), 3.79 - 3.74 (m, 5H), 3.38 (d, J = 19.4 Hz, 1H), 2.44 - 2.36(m, 1H), 2.31 - 2.22 (m, 2H), 1.90 - 1.82 (m, 2H), 1.79 - 1.71 (m, 2H), 1.53 (dd, J =11.7, 7.7 Hz, 1H). ¹³C NMR (100 MHz, DMSO-d₆): δ 198.1, 182.0, 173.0, 154.1, 153.3, 126.1, 121.2, 114.8, 114.1, 84.9, 77.5, 76.4, 69.5, 56.8, 56.0, 51.8, 49.2, 49.0, 34.4, 29.7, 25.4, 23.9. IR (neat): v_{max} (cm⁻¹) = 3425, 2954, 1766, 1668, 1657, 1497, 1279, 1199, 1165, 1051, 885, 820. HRMS (EIMS) calcd. for C₂₂H₂₅NO₈ [M]⁺: 431.1580, found 431.1587;

Synthesis of Compound sinensilactam A

To a solution of 16 (28 mg, 0.064 mmol, 1.0 equiv.) in DCM (2 mL) at 0°C was added BBr₃ (1M in DCM, 384 µL, 0.384 mmol) under Ar, the mixture was stirred at 0°C for 5h. The reaction was quenched by addition of cold H_2O (7 mL) and the mixture was extracted with ethyl acetate $(3 \times 5 \text{mL})$. The combined organic layers were washed with brine (7 mL), dried over Na₂SO₄ and concentrated under reduced pressure to afford crude product. It was purified by flash chromatography (MeOH/CHCl₃ = 1/10) to afford (+)-sinensilactam A (13 mg, 52% yield) as pale yellow solid. $R_f = 0.4$ (MeOH/CHCl₃ = 1/9; $[\alpha]_D^{25} = +50.3$ (c = 0.07, MeOH); ¹H NMR (400 MHz, DMSO-d₆) δ 10.81 (s, 1H), 9.21 (s, 1H), 7.22 (d, J = 2.9 Hz, 1H), 6.98 (dd, J = 8.8, 2.9 Hz, 1H), 6.83 (d, J =8.8 Hz, 1H), 5.45 (s, 1H), 5.25 (dd, J = 6.2, 3.4 Hz, 1H), 4.32 (dd, J = 12.0, 5.6 Hz, 1H), 4.24 (d, J = 10.1 Hz, 1H), 3.85 (d, J = 19.2 Hz, 1H), 3.77 (d, J = 10.1 Hz, 1H), 3.41 (d, J = 19.1 Hz, 1H), 2.39 (dd, J = 21.4, 11.2 Hz, 1H), 2.32 – 2.23 (m, 2H), 1.93 – 1.80 (m, 2H), 1.73 (ddd, J = 12.0, 8.6, 4.4 Hz, 1H), 1.62 – 1.47 (m, 1H). ¹³C NMR (100 MHz, DMSO-d₆): δ 201.6, 181.4, 172.5, 153.3, 149.5, 124.3, 120.0, 118.5, 114.6, 84.4, 77.0, 75.9, 69.2, 51.3, 48.2, 45.4, 33.9, 29.3, 25.0, 23.5. IR (neat): v_{max} (cm⁻¹) = 3371, 3331, 2920, 1737, 1667, 1618, 1489, 1281, 1197, 1172, 1054, 881, 815.HRMS (EIMS) calcd. for C₂₀H₂₁NO₈ [M]⁺: 403.1267, found 403.1272;

Synthesis of Compound lingzhilactone B

To a solution of **15** (30 mg, 0.086 mmol, 1.0 equiv.) in DCM (3 mL) at 0°C was added BBr₃ (1M in DCM, 430 µL, 0.430 mmol, 5.0 equiv.) under Ar, the mixture was stirred at 0°C for 5h. The reaction was quenched by addition of cold H₂O (7 mL) and the mixture was extracted with ethyl acetate (3×5 mL). The combined organic layers were washed with brine (7 mL), dried over Na₂SO₄ and concentrated under reduced pressure to afford crude product. It was purified by flash chromatography (petroleum ether/EtOAc = 1/2) to afford **lingzshilactone B** (22 mg, 80% yield) as pale yellow solid. R_f= 0.4 (petroleum ether/EtOAc = 1/2); [α]_D²⁵ = +154.75 (c = 0.08, Acetone); ¹H NMR (400 MHz, acetone-d6) δ 10.99 (s, 1H), 9.68 (s, 1H), 8.22 (s, 1H), 7.33 (d, *J* = 2.9 Hz, 1H), 7.13 (dd, *J* = 8.9, 2.9 Hz, 1H), 6.81 (t, *J* = 8.2 Hz, 1H), 4.96 – 4.88 (q, 2H), 4.75 (d, *J* = 4.8 Hz, 1H), 4.66 (dd, *J* = 10.9, 5.4 Hz, 1H), 3.78 (s, 2H), 2.06 (s, 1H), 2.01 (dd, *J* = 16.8, 11.3 Hz, 2H), 1.65 – 1.56 (m, 1H). ¹³C NMR (100 MHz, acetone-d₆): δ 205.2, 203.2, 181.2, 156.4, 150.4, 126.8, 119.7, 119.4, 115.4, 77.9, 66.9, 63.7, 54.4, 44.5, 35.5, 32.0. IR (neat):v_{max} (cm⁻¹) = 3375, 2922, 1741, 1640, 1621, 1485, 1390, 1277, 1170, 1026, 874, 808. HRMS (EIMS) calcd. for C₁₆H₁₆O₇ [M]⁺: 320.0896, found 320.0901;

Synthesis of Compound lingzhilactone C

To a solution of lingzhilactone B (24 mg, 0.08 mmol, 1.0 equiv.) in EtOH (4 mL) at room temperature were added CH(OEt)₃ (31.26 µL, 0.19 mmol, 2.5 equiv.) and p-Ts OH (1.3 mg, 0.008 mmol, 0.1 equiv.) under Ar, the mixture was stirred at 35°C for 5 h. The reaction was quenched by addition of cold H₂O (7 mL) and the mixture was extracted with ethyl acetate $(3 \times 5 \text{ mL})$. The combined organic layers were washed with brine (7 mL), dried over Na₂SO₄ and concentrated under reduced pressure to afford crude product. It was purified by flash chromatography (Petroleum ether/EtOAc = 1/2) to afford lingzhilactone C (26 mg, 91% yield) as yellow oil. $R_f = 0.4$ (Petroleum ether/EtOAc = 1/1; $[\alpha]_D^{20} = +114.27$ (c = 0.06, DMSO); ¹H NMR (400 MHz, CD₃OD) δ 7.22 (d, J = 2.9 Hz, 1H), 7.02 (dd, J = 8.9, 2.9 Hz, 1H), 6.80 (d, J = 8.9 Hz, 1H), 4.81 (d, J = 8.8 Hz, 1H), 4.59 (dd, J = 10.7, 6.7 Hz, 1H), 4.41 (s, 1H), 4.27 (d, J = 8.8 Hz, 10.1 Hz)1H), 3. 99 (d, J = 18.9 Hz, 1H), 3.77 - 3.73 (m, 1H), 3.65 (dq, J = 14.1, 7.0 Hz, 1H), 3.51 (dq, J = 9.2, 7.0 Hz, 1H), 3.40 (d, J = 18.9 Hz, 1H), 3.24 (dq, J = 14.1, 7.0 Hz, 1H)1H), 1.98 (ddd, J = 24.2, 12.4, 6.3 Hz, 2H), 1.77 (td, J = 13.1, 6.0 Hz, 1H), 1.35 (ddd, J = 12.9, 11.8, 6.3 Hz, 1H), 1.14 (t, J = 7.0 Hz, 3H), 1.01 (t, J = 7.0 Hz, 3H). ¹³C NMR (100 MHz, CD₃O D): δ 203.6, 184.1, 155.0, 149.4, 124.8, 118.9, 118.5, 113.8, 105.9, 74. 4, 68.1, 67.1, 65.2, 56.7, 52.8, 43.7, 34.8, 30.6, 14.5, 13.9. IR (neat): v_{max} (cm⁻¹) = 3439, 2976, 1756, 1635, 1616, 1482, 1376, 1279, 1165, 1053, 870, 807. HRMS (EIMS) calcd. for C₂₀H₂₆O₈ [M]⁺: 394.1628, found 394.1627.

To a solution of **12** (120 mg, 0.379 mmol, 1.0 equiv.) in *t*-BuOH (2 mL) and THF (0.8 mL) at room temperature were added NMO (50% in H₂O, 88 mg, 0.758 mmol, 2.0 equiv.) and OsO_4 (2% in H₂O, 460 µL, 0.037 mmol, 0.1 equiv.), the mixture was stirred

at room temperature for 12 h. The reaction was quenched by addition of saturated aqueous $Na_2S_2O_3$ (10 mL), and the mixture was extracted with ethyl acetate (3 × 7 mL). The combined organic layers were washed with brine (10 mL), and dried over Na_2SO_4 and concentrated under reduced pressure to afford crude product which was used in next step without further purification.

To a solution of the product made above in DCM (2.4 mL) at 0°C was added Pb(OA c)₄ (167 mg, 0.379 mmol, 1.0 equiv.) under Ar, the mixture was stirred at 0°C for 10 min. The reaction was quenched by addition of H₂O (10 mL) and the mixture was extracted with DCM (3×7 mL). The combined organic layers were washed with brine (10 mL), and dried over Na₂SO₄ and concentrated under reduced pressure to afford crude product. It was purified by flash chromatography (Petroleum ether/EtOAc = 1/1) to afford 20 (102 mg, 78% yield) as white solid (mp: 60-62°C). $R_f = 0.5$ (petroleum ether/EtOAc = 1/2); 99.9% *ee*. $[\alpha]_D^{25} = +142.18$ (c = 0.31, CHCl₃); HPLC analysis: Daicel Chiralpak OJ-H, *iso*-propanol/hexane = 20/80, flow rate =1.0 mL/min, λ = 254 nm, retention time = 44.39 min (major) and 32.89 min (minor). ¹H NMR (400 MHz, $CDCl_3$) δ 9.66 (s, 1H), 7.28 (t, J = 6.6 Hz, 1H), 7.07 (dd, J = 9.0, 3.2 Hz, 1H), 6.91 (d, J = 9.1 Hz, 1H), 5.07 (d, J = 9.9 Hz, 1H), 4.39 (s, 1H), 4.01 (d, J = 10.0 Hz, 1H), 3.96 (d, J = 19.9 Hz, 1H), 3.90 (s, 3H), 3.81 - 3.74 (m, 4H), 3.12 (d, J = 3.1 Hz, 1H), 2.50 - 3.1 Hz, 100 Hz, 102.42 (m, 1H), 2.24 (dd, J = 13.0, 6.8 Hz, 1H), 1.92 (dd, J = 13.7, 6.4 Hz, 1H), 1.79 – 1.70 (m, 1H).¹³C NMR (100 MHz, CDCl₃): δ 203.2, 199.3, 181.1, 154.4, 153.4, 125.3, 122.5, 113.4, 113.2, 83.1, 71.2, 62.6, 56.0, 55.8, 54.4, 49.3, 37.3, 32.4. IR (neat):v_{max} $(cm^{-1}) = 3456, 2939, 2838, 1761, 1716, 1609, 1581, 1494, 1277, 1223, 1158, 1017, 820.$ HRMS (EIMS) calcd. for C₁₈H₂₀O₇ [M]⁺: 348.1209, found 348.1218;

Synthesis of Compound 21

To a solution of 20 (60 mg, 0.172 mmol, 1.0 equiv.) and γ -lactam-hemiaminal (52 mg, 0.516 mmol, 3.0 equiv.) in DCM (1.5 mL) was added p-(6 mg, 0.034 mmol, 0.2 equiv.), and the resultant mixture was stirred at 28°C for 9 h. The reaction was quenched by addition of saturated aqueous NaHCO₃ (7 mL), and the mixture was extracted with DCM (3×5 mL). The combined organic layers were washed with brine (7 mL), dried over Na₂SO₄ and concentrated under reduced pressure to afford crude product. It was purified by flash chromatography (Petroleum ether/EtOAc = 1/2) to afford 21 (51 mg, 69% yield) as white solid (mp: 220-222°C). $R_f = 0.3$ (petroleum ether/EtOAc = 1/2); $[\alpha]_D^{25}$ = +94.32 (c = 0.133, DMSO); ¹H NMR (600 MHz, CDCl₃) δ 7.38 (d, J = 3.3 Hz, 1H), 7.05 (dd, J = 9.0, 3.3 Hz, 1H), 6.90 (d, J = 9.0 Hz, 1H), 5.3 6 (d, J = 4.1 Hz, 1H), 5.21 (dd, J = 6.6, 4.2 Hz, 1H), 4.72 (d, J = 10.8 Hz, 1H), 4.26 (d, J = 3.8 Hz, 2H), 3.84 (s, 3H), 3.81 – 3.78 (m, 4H), 3.71 (d, J = 19.9 Hz, 1H), 3.28 (d, J = 19.9 Hz, 1H), 2.37 (ddd, J = 7.6, 5.1, 2.7 Hz, 2H), 2.31 (ddd, J = 8.3, 6.1, 1.7 Hz, 1 H), 2.22 (td, J = 13.2, 5.9 Hz, 1H), 2.07 (dd, J = 12.5, 6.4 Hz, 1H), 1.83 – 1.77 (m, 2 H), 1.61 (ddd, J = 13.7, 6.8, 3.7 Hz, 1H).¹³C NMR (125 MHz, CDCl₃): δ 199.7, 182.4, 172.3, 154.4, 153.4, 126.4, 121.8, 114.0, 113.7, 84.1, 80.4, 72.2, 71.5, 56.3, 56.0, 52.6, 52.3, 48.7, 38.7, 29.9, 29.2, 24.8. IR (neat): v_{max} (cm⁻¹) = 3296, 2954, 1757, 1685, 1654, 1492, 1300, 1190, 1176, 1030, 869, 816. HRMS (EIMS) calcd. for C₂₂H₂₅NO₈ [M]⁺: 4 31.1580, found 431.1576;

Synthesis of Compound sinensilactam A isomer

To a solution of 21 (32 mg, 0.074 mmol, 1.0 equiv.) in DCM (2.4 mL) at 0°C was added BBr₃ (1M in DCM, 444 µL, 0.444 mmol, 6.0 equiv.) under Ar, the mixture was stirred at 0°C for 5h. The reaction was quenched by addition of cold H₂O (7 mL) and the mixture was extracted with ethyl acetate $(3 \times 5 \text{ mL})$. The combined organic layers were washed with brine (7 mL), dried over Na₂SO₄ and concentrated under reduced pressure to afford crude product. It was purified by flash chromatography (MeOH/ $CHCl_3 =$ 1/10) to afford sinesilactam A isomer (16 mg, 53% yield) as pale yellow solid. R_f= 0.4 (MeOH/CHCl₃ = 1/9); $[\alpha]_D^{25}$ = +45.04 (c = 0.1, DMSO); ¹H NMR (400 MHz, DMSO-d₆) δ 10.63 (s, 1H), 9.20 (s, 1H), 7.16 (d, J = 2.9 Hz, 1H), 6.99 (dd, J = 8.8, 2.9Hz, 1H), 6.81 (d, J = 8.8Hz, 1H), 6.61 (s, 1H), 5.29 (s, 1H), 5.27 – 5.24 (m, 1H), 4.53 (d, J = 10.5 Hz, 1H), 4.33(s, 1H), 3.94 (d, J = 10.5 Hz, 1H), 3.74 (d, J = 19.9 Hz, 1H),3.24 (d, J = 19.9 Hz, 1H), 2.38 – 2.16 (m, 4H), 1.87 (dd, J = 12.4, 6.2 Hz, 1H), 1.72 $(ddd, J = 19.1, 13.1, 7.6 Hz, 2H), 1.56 - 1.48 (m, 1H).^{13}C NMR (100 MHz, DMSO$ d₆): δ 202.8, 182.0, 171.4, 153.7, 149.8, 124.8, 120.8, 118.8, 115.2, 83.6, 80.1, 72.0, 70.6, 52.2, 51.9, 45.4, 38.8, 29.5, 29.0, 24.6. IR (neat): v_{max} (cm⁻¹) = 3415, 3194, 2917, 1730, 1668, 1622, 1486, 1282, 1179, 1170, 1059, 877, 800. HRMS (EIMS) calcd. for C₂₀H₂₁NO₈ [M]⁺: 403.1267, found 403.1269;

Synthesis of (+)-epi-lingzhilactone B

To a solution of 20 (29 mg, 0.083 mmol, 1.0 equiv.) in DCM (3 mL) at 0°C was added BBr₃ (1M in DCM, 415 µL, 0.415 mmol, 5.0 equiv.) under Ar, the mixture was stirred at 0°C for 5h. The reaction was quenched by addition of cold H₂O (7 mL) and the mixture was extracted with ethyl acetate $(3 \times 5mL)$. The combined organic layers were washed with brine (7 mL), dried over Na₂SO₄ and concentrated under reduced pressure to afford crude product. It was purified by flash chromatography (Petroleum ether/EtOAc = 1/2) to afford (+)-epi-lingzhilactone B (21 mg, 81% yield) as pale yellow solid. $R_f = 0.4$ (petroleum ether/EtOAc = 1/2); $[\alpha]_D^{25} = +85.27$ (c = 0.14, DMS O); ¹H NMR (400 MHz, acetone-d6) δ 10.99 (s, 1H), 9.74 (s, 1H), 8.21 (s, 1H), 7.43 (d, J = 2.9 Hz, 1H), 7.13 (dd, J = 8.9, 2.9 Hz, 1H), 6.82 (d, J = 8.9 Hz, 1H), 4.94 (d, J = 9.7 Hz, 1H), 4.57 (d, J = 3.9 Hz, 1H), 4.51 (s, 1H), 4.15 (d, J = 19.4 Hz, 1H), 4.10 (d, J = 9.7 Hz, 1H), 4.00 (d, J = 19.4 Hz, 1H), 2.60 (dd, J = 11.8, 7.5 Hz, 2H), 2.18 (dd, J= 13.0, 6.9 Hz, 1H), 1.92 (dd, J = 13.5, 6.6 Hz, 1H), 1.85 – 1.77 (m, 1H). ¹³C NMR (100 MHz, acetone-d6): δ 205.6, 202.2, 181.1, 156.1, 150.1, 126.3, 119.3, 115.3, 84.6, 70.9, 62.7, 53.0, 44.2, 38.1, 32.9. IR (neat): V_{max} (cm⁻¹) = 3356, 3346, 2920, 1758, 1710, 1619, 1485, 1388, 1284, 1159, 1042, 886,824. HRMS (EIMS) calcd. for C₁₆H₁₆O₇ [M]⁺: 320.0896, found 320.0900;

Synthesis of Compound 17

S23

To a solution of 9 (1.00 g, 2.762 mmol, 1.0 equiv.) in DMF (10 mL) at 0°C was added NaH (60%, 132 mg, 3.314 mmol, 1.2 equiv.) and BnBr (655 µL, 5.524 mmol, 2.0 equiv.) under Ar, the mixture was stirred at 0°C for 1h. The reaction was quenched by addition of saturated aqueous NH₄Cl (30 mL) and the mixture was extracted with ethyl acetate (3×20 mL). The combined organic layers were washed with H₂O (2×30 mL), and brine (30 mL), and dried over Na₂SO₄ and concentrated under reduced pressure to afford crude product. It was purified by flash chromatography (Petroleum ether/EtOAc = 6/1) to afford 17 (936 mg, 75% yield) as colorless oil. $R_f = 0.4$ (petroleum ether/EtOAc = 5/1); 99.4% *ee*. [α]_D²⁵ = -43.59 (c = 0.23, CHCl₃); HPLC analysis: Daicel Chiralpak AD-H, *iso*-propanol/hexane = 20/80, flow rate = 1.0 mL/min, λ = 254 nm, retention time = 17.97 min (major) and 19.39 min (minor). ¹H NMR (400 MHz, CDCl₃) δ 7.33 – 7.26 (m, 5H), 6.73 (s, 2H), 6.61 (s, 1H), 5.06 (d, J = 9.5 Hz, 2H), 4.55 (q, J = 12.3 Hz, 2H), 3.92 – 3.83 (m, 2H), 3.79 – 3.71 (m, 7H), 3.13 (d, J = 14.1 Hz, 1H), 2.96 (d, J = 5.0 Hz, 1H), 2.71 (d, J = 4.9 Hz, 1H), 2.55 - 2.46 (m, 2H), 2.04 - 1.97 (m, 1H), 2.04 - 1.97 (m,1.90 - 1.80 (m, 1H), 1.56 - 1.49 (m, 1H), 1.12 (t, J = 7.1 Hz, 3H). ¹³C NMR (100 MHz, CDCl₃): § 171.3, 153.3, 150.7, 144.6, 138.4, 132.6, 128.3, 127.6, 127.5, 118.2, 116.4, 112.8, 111.6, 71.6, 67.5, 60.6, 56.1, 55.7, 51.7, 46.4, 42.0, 28.7, 27.6, 14.0. IR $(neat):v_{max}$ $(cm^{-1}) = 2940, 2833, 1729, 1581, 1496, 1218, 1046, 886, 808.$ HRMS (EIMS) calcd. for C₂₇H₃₂O₆ [M]⁺: 452.2199, found 452.2195;

To a solution of **17** (100 mg, 0.221 mmol, 1.0 equiv.) in anhydrous DCM (1 mL) at 0°C was added TMSOTf (100 μ L, 0.552 mmol, 2.5 equiv.) under Ar, the mixture was stirred at 0°C for 1h. The reaction was quenched by addition of saturated aqueous NaHCO₃ (10 mL), and the mixture was extracted with DCM (3 × 7 mL). The combined organic layers S24

were washed with brine (10 mL), dried over Na₂SO₄ and concentrated under reduced pressure to afford crude product. It was purified by flash chromatography (Petroleum ether/EtOAc = 6/1) to afford **18** (45 mg, 51% yield) as colorless oil. R_f = 0.4 (Petroleum ether/EtOAc = 5/1); [α]_D²⁵ = -23.04 (c = 0.22, CHCl₃); ¹H NMR (400 MHz, CDCl₃) δ 7.38 – 7.35 (m, 4H), 7.29 (dd, *J* = 8.3, 4.1 Hz, 1H), 6.79 (d, *J* = 9.0 Hz, 1H), 6.69 (d, *J* = 9.0 Hz, 1H), 5.92 (d, *J* = 1.1 Hz, 1H), 5.51 (s, 1H), 5.22 (d, *J* = 9.6 Hz, 1H), 4.69 (d, *J* = 12.4 Hz, 1H), 4.43 (d, *J* = 12.5 Hz, 1H), 4.09 (d, *J* = 9.6 Hz, 1H), 3.99 (d, *J* = 1.6 Hz, 1H), 3.79 (s, 3H), 3.58 (s, 3H), 2.51 (dd, *J* = 32.7, 12.4 Hz, 2H), 2.35 (td, *J* = 12.5, 7.6 Hz, 1H), 1.89 (ddd, *J* = 21.0, 13.3, 8.2 Hz, 2H), 1.25 – 1.18 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 182.2, 151.1, 150.7, 138.6, 134.1, 128.3, 127.4, 127.3,127.0, 126.5, 119.6, 110.6, 109.9, 85.8, 72.4, 70.3, 57.1, 56.0, 55.2, 52.2, 40.4, 32.0, 30.1. IR (neat):vmax (cm⁻¹) = 2926, 2851, 1760, 1631, 1496, 1475, 1261, 1062, 888, 802. HRMS (EIMS) calcd. for C₂₅H₂₆O₅ [M]⁺: 406.1780, found 406.1773;

Synthesis of Compound 19

To a solution of **18** (71 mg, 0.174 mmol, 1.0 equiv.) in *t*-BuOH (1 mL) and THF (0.4 mL) at room temperature were added NMO (50% in H₂O, 40 mg, 0.348 mmol, 2.0 equiv.) and OsO_4 (2% in H₂O, 212 µL, 0.017 mmol, 0.1 equiv.), the mixture was stirred at room temperature for 7 h. The reaction was quenched by addition of saturated aqueous Na₂S₂O₃ (10 mL), and the mixture was extracted with ethyl acetate (3 × 7 mL). The combined organic layers were washed with brine (10 mL), dried over Na₂SO₄ and concentrated under reduced pressure. The crude was used in next step without further purification.

To a solution of the crude in THF (1.2 mL) and $H_2O(0.6 \text{ mL})$ at room temperature was

added NaIO₄ (93 mg, 0.435 mmol, 2.5 equiv.), the mixture was stirred at room temperature for 3h. The reaction was quenched by addition of H₂O (10 mL) and the mixture was extracted with ethyl acetate $(3 \times 7mL)$. The combined organic layers were washed with brine (10 mL), and dried over Na₂SO₄ and concentrated under reduced pressure to afford crude product. It was purified by flash chromatography (Petroleum ether/EtOAc = 3/2) to afford 19 (52 mg, 74% yield) as colorless oil. R_f = 0.4 (Petroleum ether/EtOAc = 1/1); 99.6% ee. $[\alpha]_D^{25} = -212.47$ (c = 0.23, CHCl₃); HPLC analysis: Daicel Chiralpak AD-H, *iso*-propanol/hexane = 5/95, flow rate = 1.0 mL/min, λ = 254 nm, retention time = 19.46 min (major) and 30.46 min (minor). ¹H NMR (400 MHz, $CDCl_3$) δ 7.39 – 7.29 (m, 5H), 7.00 (d, J = 9.1 Hz, 1H), 6.87 (d, J = 9.1 Hz, 1H), 5.25 (d, J = 9.7 Hz, 1H), 4.71 (d, J = 12.5 Hz, 1H), 4.42 (d, J = 12.5 Hz, 1H), 4.23 (d, J = 9.7 Hz, 1H), 4.08 (d, J = 1.9 Hz, 1H), 3.83 (s, 3H), 3.60 (s, 3H), 2.82 (dd, J = 34.1, 12.6 Hz, 2H), 2.55 - 2.47 (m, 1H), 1.92 (dd, J = 13.7, 8.5 Hz, 2H), 1.40 - 1.31 (m, 1H). ¹³C NMR (100 MHz, CDCl₃): δ 194.8, 179.9, 152.0, 150.1, 138.1, 131.3, 128.4, 127.5, 123.3, 116.6, 111.9, 85.3, 71.3, 70.5, 56.5, 56.3, 55.5, 52.5, 44.8, 31.9, 29.4. IR (neat):vmax $(cm^{-1}) = 2959, 2865, 1769, 1698, 1478, 1465, 1272, 1012, 870, 821.$ HRMS (EIMS) calcd. for C₂₄H₂₄O₆ [M]⁺: 408.1573, found 408.1574;

Synthesis of Compound (-)-lingzhiol

The mixture of **19** (52 mg, 0.127 mmol, 1.0 equiv.) and BBr₃ (1M in DCM, 1.27 mL, 1.2 70 mmol, 10.0 equiv.) under Ar was stirred at 0°C for 30 min, and then for 4 h at room temperature. The reaction was quenched by addition of saturated aqueous NaHCO₃ (7 mL) and the mixture was extracted with DCM (3×5 mL). The combined organic layers were washed with brine (7 mL), dried over Na₂SO₄ and concentrated

under reduced pressure to afford crude product. It was purified by flash chromatography (Petroleum ether/EtOAc = 1/1) to afford (-)-lingzhiol (19 mg, 52% yield) as pale yellow solid. $R_f = 0.2$ (Petroleum ether/EtOAc = 1/1); $[\alpha]_D^{25} = -60.7$ (c = 0.12, MeOH); ¹H NMR (400 MHz, acetone-d6) δ 11.58 (s, 1H), 7.23 (d, *J* = 8.9 Hz, 1H), 6.77 (d, *J* = 8.9 Hz, 1H), 5.22 (d, *J* = 9.6 Hz, 1H), 4.64 (t, *J* = 4.6 Hz, 1H), 4.46 (d, *J* = 9.6 Hz, 1H), 3.10 (d, *J* = 16.0 Hz, 1H), 2.79 (d, *J* = 16.0 Hz, 1H), 2.49 – 2.42 (m, 1H), 1.87 – 1.67 (m, 3H). ¹³C NMR (100 MHz, acetone-d6): δ 202.3, 180.1, 156.3, 148.0, 129.1, 127.6, 117.9, 116.4, 80.7, 70.9, 56.1, 52.5, 42.3, 33.8, 33.3. IR (neat):vm ax (cm⁻¹) = 3404, 3212, 2979, 1722, 1642, 1463, 1176, 1016, 887, 803. HRMS (EIMS) calcd. for C₁₅H₁₄O₆ [M]⁺: 290.0790, found 290.0789;

III Comparison of the Spectra of Natural and Synthetic

Compounds

Table S1. Comparison of ¹H NMR data for (+)-sinensilactam A in DMSO- d_6

(+)-sinensilactam A

	Natural	Synthetic	Err
	δ[ppm, mult, <i>J</i> (Hz)] $δ$ [ppm, mult, <i>J</i> (Hz)]		(Natural-Synthetic)
	400 MHz	400 MHz	$\Delta\delta(ppm)$
3	7.22(d, 3.0)	7.22(d, 2.9)	
5	6.99(dd, 8.9, 3.0)	6.98(dd, 8.8, 2.9)	0.01
6	6.83(d, 8.9)	6.83(d, 8.8)	-
2'	a 3.85(d, 19.1)	a 3.85(d, 19.2)	-
	b 3.41(d, 19.1)	b 3.41(d, 19.1)	-
4'	a 1.85(dd, 13.7, 6.1)	1.86-1.80(m)	-0.01
	b 1.80(dd, 13.7, 6.2)	1.00 1.00(iii)	
5'	a 1.90(m)	a 1.89(m)	0.01
	b 1.55(m)	b 1.55(m)	-
6'	4.32(dd, 12.1, 5.7)	4.32(dd, 12.0, 5.6)	-
8'	5.45(brs)	5.45(s)	-
9'	a 4.24(d, 10.2)	a 4.24(d, 10.1)	-
	b 3.76(d, 10.2)	b 3.77(d, 10.1)	-0.01
3"	a 2.39(d, 17.7)	2.39-2.29(m)	_
	b 2.29(d, 17.7)		
4''	a 2.25(overlap)	a 2.26(overlap)	-0.01
	b 1.73(m)	b 1.73(m)	-
5''	5.25(dd, 6.3, 3.7)	5.25(dd, 6.2, 3.4)	-
1-OH	10.7(s)	10.81(s)	-0.11
4-OH	9.20(s)	9.21(s)	-0.01
8'-OH	6.53(brs)	-	-

 Table S2. Comparison of ¹³C NMR data for (+)-sinensilactam A in DMSO-d6

(+)-sinensilactam A

	Natural δC (ppm)	Synthetic	Err (Natural-
	100 MHz	100 MHz	Synthetic)
			Δδ(ppm)
1	153.3	153.3	-
2	120.0	120.0	-
3	114.6	114.6	-
4	149.5	149.5	-
5	124.3	124.3	-
6	118.5	118.5	-
1'	201.6	201.6	-
2'	45.4	45.4	-
3'	51.3	51.3	-
4'	33.9	33.9	-
5'	25.0	25.0	-
6'	77.1	77.0	0.1
7'	48.2	48.2	-
8'	75.9	75.9	-
9'	69.2	69.2	-
10'	181.4	181.4	-
2''	172.6	172.5	0.1
3''	29.3	29.3	-
4''	23.5	23.5	-
5''	84.5	84.4	0.1

 Table S3. Comparison of ¹H NMR data for (+)-lingzhilactone B in acetone-d6

(+)-lingzhilactone B

	Natural	Synthetic	Err
	δ [ppm, mult, <i>J</i> (Hz)]	δ[ppm, mult, <i>J</i> (Hz)]	(Natural-
	600 MHz	400 MHz	Synthetic)
			Δδ(ppm)
3	7.33(d, 2.9)	7.33(d, 2.9)	-
5	7.12(dd, 8.9, 2.9)	7.13(dd, 8.9, 2.9)	-0.01
6	6.81(d, 8.9)	6.81(t, 8.2)	-
2'	3.77(s)	3.78(s)	-0.01
4'	2.03(m)	2.01(dd, 16.8, 11.3)	0.02
5'	a 2.06(overlap)	a 2.06(s)	-
	b 1.58(m)	b 1.59(m)	-0.01
6'	4.66(dd, 11.0, 5.4)	4.66(dd, 11.0, 5.4)	-
8'	9.68(s)	9.68(s)	-
9'	a 4.94(d, 9.7)	a 4.94(d, 9.7)	-
	b 4.88(d, 9.7)	b 4.88(d, 9.7)	-
1-OH	11.00(s)	10.99(s)	0.01
4-OH	8.35(brs)	8.22 (s)	0.13
6'-ОН	-	4.75(d, 4.8)	-

Table S4. Comparison of 13 C NMR data for (+)-lingzhilactone B in acetone- d_6

(+)-lingzhilactone B

	Natural	Synthetic	Err
	δ(ppm)	δ(ppm)	(Natural-Synthetic)
	100 MHz	100 MHz	$\Delta\delta$ (ppm)
1	156.3	156.4	-0.1
2	119.4	119.4	-
3	115.3	115.4	-0.1
4	150.4	150.4	-
5	126.7	126.8	-0.1
6	119.7	119.7	-
1'	205.2	205.2	-
2'	44.4	44.5	-0.1
3'	54.3	54.4	-0.1
4'	35.4	35.5	-0.1
5'	31.9	32.0	-0.1
6'	77.8	77.9	-0.1
7'	63.6	63.7	-0.1
8'	203.3	203.2	0.1
9'	66.9	66.9	-
10'	181.2	181.2	-

Table S5. Comparison of ¹H NMR data for (-)-lingzhiol in acetone- d_6

	Natural	Synthetic	Err
	δ[ppm, mult, <i>J</i> (Hz)]	δ[ppm, mult, <i>J</i> (Hz)]	(Natural-
	400 MHz	400 MHz	Synthetic)
			Δδ (ppm)
5	7.22(d, 8.9)	7.23(d, 8.9)	-0.01
6	6.77(d, 8.9)	6.77(d, 8.9)	-
2'a	3.09(d, 16.0)	3.10(d, 16.0)	-0.01
2'b	2.79(d, 16.0)	2.79(d, 16.0)	-0.01
4'a	2.44(m)	2.45(m)	-
4'b	1.78(m)	1.78(m)	-
5'a	1.83(m)	1.84(m)	-0.01
5'b	1.70(m)	1.70(m)	-
6'	4.63(t, 4.8)	4.64(t, 4.6)	-0.01
8'a	5.22(d, 9.6)	5.22(d, 9.6)	-
8'b	4.45(d, 9.6)	4.46(d, 9.6)	-0.01

 Table S6. Comparison of ¹³C NMR data for (-)-lingzhiol in acetone-d6

	Natural	Synthetic	Err
	δ[ppm]	δ[ppm]	(Natural-
	100 MHz	100 MHz	Synthetic)
			$\Delta\delta(ppm)$
1	156.3	156.3	-
2	116.4	116.4	-
3	129.1	129.1	-
4	147.9	148.0	-0.1
5	127.5	127.6	-0.1
6	117.9	117.9	-
1'	202.3	202.3	-
2'	42.3	42.3	-
3'	52.5	52.5	-
4'	33.3	33.3	-
5'	33.7	33.8	-0.1
6'	80.6	80.7	-0.1
7'	56.1	56.1	-
8'	70.9	70.9	-
9	180.1	180.1	-

IV NMR Spectra for the Synthesized Compounds

¹³C NMR (100 MHz, CDCl₃) of compound 2

 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 12
 <

¹³C NMR (100 MHz, CDCl₃) of compound 5a

¹³C NMR (100 MHz, CDCl₃) of compound (R)-4

¹³C NMR (100 MHz, CDCl₃) of compound 6

¹³C NMR (100 MHz, CDCl₃) of compound 7

7.30 7.29 7.26 7.07 7.07 7.07 7.05 7.07 7.05 6.90

¹H NMR (400 MHz, DMSO-d6) of compound 16

¹³C NMR (100 MHz, DMSO-d₆) of sinensilactam A

(+)-lingzhilactone B

¹H NMR (400 MHz, acetone-d₆) of lingzhilactone B

¹³C NMR (100 MHz, acetone-d₆) of lingzhilactone B

¹³C NMR (100 MHz, CD₃OD) of lingzhilactone C

¹³C NMR (100 MHz, CDCl₃) of compound 20

¹³C NMR (125 MHz, CDCl₃) of compound 21

(+)-sinensilactam A isomer

¹H NMR (400 MHz, DMSO-d₆) of (+)-sinensilactam A isomer

¹³C NMR (100 MHz, DMSO-d₆) of (+)-sinensilactam A isomer

HMBC NMR (DMSO-d₆) of (+)-sinensilactam A isomer

¹H NMR (400 MHz, acetone-d₆) of (+)-epi-lingzhilactone B

¹³C NMR (100 MHz, CDCl₃) of compound 17

¹³C NMR (100 MHz, CDCl₃) of compound 19

S59

V X-ray for the Synthesized Compounds

Crystal data and structure refinement for 13

Empirical formula	C19 H19 F3 O7 S	
Formula weight	448.40	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2 ₁ /n	
Unit cell dimensions	a = 11.1889(12) Å	$\Box = 90^{\circ}.$
	b = 15.6583(16) Å	$\Box = 103.564(2)^{\circ}.$
	c = 11.3387(12) Å	$\Box = 90^{\circ}.$
Volume	1931.1(4) Å ³	
Z	4	
Density (calculated)	1.542 Mg/m ³	
Absorption coefficient	0.237 mm ⁻¹	
F(000)	928	
Crystal size	0.730 x 0.250 x 0.200 mr	m ³
Theta range for data collection	2.260 to 31.139°.	
Index ranges	-15<=h<=16, -20<=k<=2	22, - 16<=1<=14
Reflections collected	21253	
Independent reflections	5730 [R(int) = 0.0323]	
Completeness to theta = 25.242°	99.7 %	
Absorption correction	Semi-empirical from equ	iv.alents
Refinement method	Full-matrix least-squares	on F ²
Data / restraints / parameters	5730 / 0 / 273	
Goodness-of-fit on F ²	1.073	
Final R indices [I>2sigma(I)]	R1 = 0.0385, wR2 = 0.10	950
R indices (all data)	R1 = 0.0498, wR2 = 0.11	2
	S60	

Crystal data and structure refinement for 21

Empirical formula	C22 H25 N O8	
Formula weight	431.43	
Temperature	100(2) K	
Wavelength	0.71073 Å	
Crystal system	Monoclinic	
Space group	P2 ₁ /n	
Unit cell dimensions	a = 18.9306(14) Å	<i>α</i> = 90°.
	b = 11.0428(8) Å	β=114.6950(10)°.
	c = 21.1989(16) Å	$\gamma = 90^{\circ}$.
Volume	4026.3(5) Å ³	
Z	8	
Density (calculated)	1.423 Mg/m ³	
Absorption coefficient	0.109 mm ⁻¹	
F(000)	1824	
Crystal size	0.290 x 0.250 x 0.180 mm ³	
Theta range for data collection	1.214 to 31.214°.	
Index ranges	-27<=h<=26, -14<=k<=16, -30<=l<=30	
Reflections collected	44978	
Independent reflections	12107 [R(int) = 0.0530]	
Completeness to theta = 25.242°	99.7 %	
Absorption correction	Semi-empirical from equiv.aler	nts
Refinement method	Full-matrix least-squares on F ²	
Data / restraints / parameters	12107 / 0 / 569	
Goodness-of-fit on F ²	1.006	
Final R indices [I>2sigma(I)]	R1 = 0.0488, $wR2 = 0.1096$	
R indices (all data)	R1 = 0.0842, wR2 = 0.1259	
Extinction coefficient	n/a	
Largest diff. peak and hole So	0.416 and -0.290 e.Å ⁻³ 51	

VI Chiral HPLC chromatograms of Compounds

Chiral HPLC chromatograms of rac 2 and 2

Chiral HPLC chromatograms of rac 6 and 6

1 检测器 A 通道1/254nm

	PeakTable					
检测器AC	ch1 254nm					
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	9.446	7396312	433907	50.097	56.513	
2	10.229	7367647	333896	49.903	43.487	
总计		14763959	767803	100.000	100.000	

	PeakTable					
检测器 A Ch1 254nm						
Peak#	Ret. Time	Area	Height	Area %	Height %	
1	9.957	9817544	282456	100.000	100.000	
总计		9817544	282456	100.000	100.000	

Chiral HPLC chromatograms of *rac* 12 and 12

	1.254		PeakTable		
豆测器 A Cl Peak#	Ret. Time	Area	Height	Area %	Height %
1	14.911	13723741	516868	49.948	66.137
2	27.593	13752110	264648	50.052	33.863
总计		27475851	781516	100.000	100.000

1 检测器 A 通道1/254nm

检测器 A (Ch1 254nm		PeakTable		
Peak#	Ret. Time	Area	Height	Area %	Height %
1	13.975	9118	375	0.017	0.039
2	26.886	53358912	968604	99.983	99.961
总计		53368030	968979	100.000	100.000

Chiral HPLC chromatograms of rac 15 and 15

			PeakTable		
检测器AC	h1 254nm				
Peak#	Ret. Time	Area	Height	Area %	Height %
1	30.200	18258278	155110	51.963	60.110
2	43.559	16878857	102935	48.037	39.890
总计		35137135	258044	100.000	100.000

1 检测器 A 通道1/254nm

》测器 A C	h1 254nm		PeakTable		
Peak#	Ret. Time	Area	Height	Area %	Height %
1	29.146	174460	2500	0.249	0.753
2	42.161	69944442	329605	99.751	99.247
总计		70118901	332105	100.000	100.000

Chiral HPLC chromatograms of *rac* 20 and 20

检测器 A Cl	n1 254nm	1	PeakTable		
Peak#	Ret. Time	Area	Height	Area %	Height %
1	32.665	34839830	260768	49.059	56.789
2	45.634	36176915	198420	50.941	43.211
总计		71016745	459188	100.000	100.000

1 检测器 A 通道1/254nm

总计

PeakTable 检测器 A Ch1 254nm Peak# Ret. Time Height % Height Area % Area 32.893 3431 98 0.005 1 44.390 351845 64380506 99.995 2

64383937

351943

100.000

0.028

99.972

100.000

Chiral HPLC chromatograms of rac 17 and 17

检测器AC	3h1 254mm		PeakTable		
Peak#	Ret. Time	Area	Height	Area %	Height %
1	18.028	2012177	62991	50.154	48.803
2	19.217	1999810	66080	49.846	51.197
总计		4011987	129071	100.000	100.000

-	127 6-5 40	and the second s	- and then the

检测器AC	Ch1 254nm		PeakTable		
Peak#	Ret. Time	Area	Height	Area %	Height %
1	17.974	2066330	58223	99.506	99.425
2	19.393	10262	337	0.494	0.575
总计		2076592	58560	100.000	100.000

Chiral HPLC chromatograms of *rac* 19 and 19

PeakTable 检测器 A Ch1 254nm Peak# Ret. Time Height Area % Height % Area 5136587 5125056 19.217 151809 50.056 66.330 30.221 77059 49.944 33.670 10261643 228867 100.000 100.000

1 检测器 A 通道1/254mm

检测器AC	'h1 254nm		PeakTable		
Peak#	Ret. Time	Area	Height	Area %	Height %
1	19.462	9305247	264204	99.333	99.597
2	30.461	62496	1069	0.667	0.403
总计		9367743	265273	100.000	100.000