Supporting Information

Room-temperature large entropy change in a new hybrid ferroelastic with unconventional bond-switching mechanism

Wei-Jian Xu, ${ }^{\text {a,b }}$ Ying Zeng, ${ }^{\text {a }}$ Wei Yuan , ${ }^{a}$ Wei-Xiong Zhang ${ }^{*}{ }^{a}$ and Xiao-Ming Chen ${ }^{\text {a }}$
a MOE Key Laboratory of Bioinorganic and Synthetic Chemistry, School of Chemistry, Sun Yat-Sen University, Guangzhou 510275, China.
b Department of Chemistry \& CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193
Aveiro, Portugal.

Experimental

Synthesis

$\mathrm{Na}_{3}\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$ was synthesized from $\mathrm{K}_{3}\left[\mathrm{Co}(\mathrm{CN})_{6}\right]$ through silver precipitation. ${ }^{[51]}$ The pale pink block crystals of $\left(\mathrm{Me}_{3} \mathrm{NNH}_{2}\right)_{2}\left[\mathrm{Co}(\mathrm{CN})_{6} \mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$ (TMC-2) were obtained by slowly evaporating aqueous solution containing $\mathrm{Na}_{3} \mathrm{Co}(\mathrm{CN})_{6}$ and 1,1,1-trimethyl-hydrazoniuiodide in a ratio of 1:2 at room temperature within several days, in a yield of 80% based on Co. Elemental analysis, calcd (\%) for TMC-2 ($\mathrm{C}_{12} \mathrm{H}_{24} \mathrm{ON}_{10} \mathrm{CoNa}, 406.33$): C, 35.47 ; H, 5.91 ; N, 34.49 . Found, C, 35.79 H, 5.91; N, 34.40.

X-ray Crystallographic Analysis

The in-situ variable-temperature single-crystal diffraction intensities data were collected on a RigakuXtaLAB P300DS diffractometer (Mo $K_{\alpha}, \lambda=0.71073 \AA$). The CrystalClear software package (Rigaku) was used for data collection, cell refinement and data reduction. Using Olex ${ }^{2}$ program, the structures were solved by using Intrinsic Phasing with the SHELXT structure solution program and using full-matrix least-squares method with the SHELXL refinement program. ${ }^{[\mathrm{S} 2, \mathrm{~S} 3]}$ Non-hydrogen atoms were refined anisotropically and the positions of the hydrogen atoms were generated geometrically. Crystallographic data and structural refinements are summarized in Table S1. Selected bond distances and bond angles are listed in Tables S2-S7. CCDC numbers: 2003376-2003377. Powder X-ray diffraction (PXRD) patterns $\left(\mathrm{Cu} K_{\alpha}, \lambda=1.54184 \AA\right.$) were collected on Bruker Advance D8 DA VANCI $\theta-2 \theta$ diffractometer. Pawley refinement of the experimental PXRD patterns were performed using the Reflex module of Material Studio 5. [54]

Elemental analysis

Elemental (C, H, and N) analyses were performed on a Perkin-Elmer Vario EL elemental analyzer.

Thermal Analysis

Thermogravimetric analysis (TGA) was carried out on a TA Q50 system with a heating rate of $10 \mathrm{~K} \mathrm{~min}^{-1}$ under a nitrogen atmosphere. Differential scanning calorimetry (DSC) was carried out on a TA DSC Q2000 instrument under a nitrogen atmosphere in aluminum crucibles with heating and cooling rates of $10 \mathrm{~K} \mathrm{~min}^{-1}$ from 200 to 373 K .

Dielectric measurements

The dielectric measurement was carried on a Tonghui TH2828A LCR meter at 10 frequencies from 500 Hz to 1 MHz , with an applied voltage of 1.0 V and a temperature sweeping rate of 3 $\mathrm{K} \mathrm{min}^{-1}$ approximately in the range of $80-350 \mathrm{~K}$ in a Mercury iTC cryogenic environment controller of Oxford Instrument. The powder sample of TMC-2 was ground and pressed into tablets under a pressure around 2 GPa . The capacitors were made by painting the two faces of tablet or crystal sample with silver conducting paste and using gold wires as the electrodes.

Variable-temperature polarization microscopy

Variable-temperature polarization microscopy observations were carried out with a polarizing microscope MSHOT MD90 equipped with a Linkam cooling/heating stage THMSE 600. The temperature was stabilized with an accuracy of $\pm 0.1 \mathrm{~K}$.

Deduction of domain orientation

During the phase transition from Pmmn (PP) to $P 2_{1} / c$ (FP), a symmetry breaking occurs from $8\left(E, C_{2}, 2 C^{\prime} 2, i, \sigma_{h}, 2 \sigma_{v}\right)$ to $4\left(E, i, C_{2}, \sigma_{h}\right)$ symmetry elements, classifying TMC-2 to be an $\mathrm{mmmF} 2 / m$ ferroelastic species with two possible orientation states in the ferroelastic phase. The spontaneous strain within these two states are expressed as

$$
\varepsilon_{i j}^{(1)}=\left[\begin{array}{ccc}
\varepsilon_{11} & 0 & \varepsilon_{13} \\
0 & \varepsilon_{22} & 0 \\
\varepsilon_{31} & 0 & \varepsilon_{33}
\end{array}\right], \varepsilon_{i j}^{(2)}=\left[\begin{array}{ccc}
\varepsilon_{11} & 0 & -\varepsilon_{13} \\
0 & \varepsilon_{22} & 0 \\
-\varepsilon_{31} & 0 & \varepsilon_{33}
\end{array}\right]
$$

The modified spontaneous strains proposed by Aizu are then ${ }^{[55]}$

$$
\varepsilon_{s i j}^{(i)}=\varepsilon_{i j}^{(i)}-\frac{1}{q} \sum_{k=1}^{q} \varepsilon_{i j}^{(k)}(i=1,2, \ldots, q)
$$

In this case,

$$
\varepsilon_{s i j}^{(1)}=\left[\begin{array}{ccc}
0 & 0 & \varepsilon_{13} \\
0 & 0 & 0 \\
\varepsilon_{31} & 0 & 0
\end{array}\right], \varepsilon_{s i j}^{(2)}=\left[\begin{array}{ccc}
0 & 0 & -\varepsilon_{13} \\
0 & 0 & 0 \\
-\varepsilon_{31} & 0 & 0
\end{array}\right]
$$

considering the compatibility condition of spontaneous strain

$$
\left[\varepsilon_{s i j}^{(1)}-\varepsilon_{s i j}^{(2)}\right] x_{i} x_{j}=0
$$

where x_{i} and x_{j} are components of unit vector on domain walls, we obtain $2 \varepsilon_{13} x Z=0$, which gives the orientation of domain walls $x=0$ and $z=0$.

For $m m m F 2 / m$ species with monoclinic setting in $P 2_{1} / c$, the spontaneous strain tensor is expressed as:

$$
\varepsilon_{i j}=\left[\begin{array}{ccc}
\frac{a_{\mathrm{FP}}}{a_{\mathrm{PP}}}-1 & 0 & \frac{c_{\mathrm{FP}}}{2 c_{\mathrm{PP}}} \cos \beta \\
0 & \frac{b_{\mathrm{FP}}}{b_{\mathrm{PP}}}-1 & 0 \\
\frac{c_{\mathrm{FP}}}{2 c_{\mathrm{PP}}} \cos \beta & 0 & \frac{c_{\mathrm{FP}}}{c_{\mathrm{PP}}} \sin \beta-1
\end{array}\right]
$$

The total spontaneous strain ($\varepsilon_{\mathrm{ss}}$) can be calculated with cell parameters measured at 200 K (FP) and 333 K. (Table S1):

$$
\varepsilon_{s s}=\sqrt{\sum_{i, j} \varepsilon_{i j}^{2}}=0.036
$$

Table S1. Crystal data and structure refinement parameters for TMC-2 at ferroelastic phase (FP) and paraelastic phase (PP).

Formula$T(\mathrm{~K})$	$\left(\mathrm{Me}_{3} \mathrm{NNH}_{2}\right)_{2}\left[\mathrm{Co}(\mathrm{CN})_{6} \mathrm{Na}\left(\mathrm{H}_{2} \mathrm{O}\right)\right]$	
	200(2)	333(2)
Phases	FP	PP
Crystal system	Monoclinic	orthorhombic
Space group	$P 2{ }_{1} / c$	Pmmn
a / \AA	8.3357(2)	8.4803(3)
b / \AA	12.4689(3)	12.4172(9)
c / \AA	18.5938(4)	$9.5901(6)$
$\beta{ }^{\circ}$	90.564(2)	90
V / \AA^{3}	1932.49(8)	1009.85(10)
Z	4	2
$D_{\mathrm{c}} / \mathrm{g} \mathrm{cm}^{-3}$	1.397	1.336
$\mu\left(\mathrm{mm}^{-1}\right)$	0.933	0.893
reflns coll.	17630	4491
unique reflns	3798	1100
$R_{1}[I>2 \sigma(I)]$	0.0276	0.0494
$w R_{2}[I>2 \sigma(I)]$	0.0700	0.1268
R_{1} (all data)	0.0331	0.0627
$w R_{2}$ (all data)	0.0751	0.1346
GOF	1.075	1.027
CCDC	2003377	2003376

Figure S1. The PXRD patterns confirmed the phase purity of the as-synthesized sample for TMC-2.

Figure S2. Pawley refinement on the PXRD pattern of TMC-2 at 295 K reveals the presence of a monoclinic unit cell: $a=8.385(7) \AA, b=12.53(1) \AA, c=18.68(1) \AA, \beta=90.653(3)^{\circ}, V=$ 1962.15(6) \AA^{3} (residuals $R_{\mathrm{p}}=1.68 \%, R_{\mathrm{wp}}=2.15 \%$), with $P 2_{1} / c$ as the space group. Experimental pattern (blue circles), calculated pattern (red line), difference profile (grey line) and background profile (dashed line). Stick marks (|) at the bottom of the pattern indicate peak positions allowed by the appointed unit-cell parameters and space group.

Figure S3. TG profile of TMC-2.

Figure S4. 2D layer structure of TMC-2 in the FP at 200 K (a) and in the PP at 333 K (b). The coordinated $\mathrm{H}_{2} \mathrm{O}$ shows four-fold disorder as required by the imposed orthorhombic symmetry.

Figure S5. The room temperature PXRD patterns of a single crystal of TMC-2.

Figure S6. Evolution of the domain structure of TMC-2 in a heating-cooling cycle.

Figure S7. Temperature dependence of the dielectric constant $\left(\varepsilon^{\prime}\right)$ of TMC-2 measured on a pressed-powder pellet sample at different frequencies in cooling cycle.

Figure S8. DSC curves of TMC-2 at different heating-cooling cycles with a scanning rate of 10 K $\min ^{-1}$.

Table S2. Summary of thermal properties of TMC-2 by DSC measurements at different heating-cooling cycles with a scanning rate of $10 \mathrm{~K} \mathrm{~min}^{-1}$.

Heating/cooling	T_{c}	Latent heat $\left(\mathrm{kJ} \mathrm{kg}^{-1}\right)$	$\Delta S\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$	$\Delta S\left(\mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\right) \exp$
$1^{\text {st }}$ cooling	283	40.5	58.1	143
$2^{\text {nd }}$ heating	300	44.5	60.3	148
$3^{\text {rd }}$ cooling	284	41.5	59.4	146
$4^{\text {th }}$ heating	300	43.7	59.2	146
$5^{\text {th }}$ cooling	282	41.2	59.4	146

Table S3. The $4^{\text {th }}$ heating DSC data used for calculating $\mathrm{d} T_{\mathrm{c}} / \mathrm{d} P$ of TMC-2 by the Clausius-Clapeyron equation

$T_{\mathrm{c}}(\mathrm{K})$ exp.	300
M.W. $\left(\mathrm{g} \mathrm{mol}^{-1}\right)$	406.33
$\Delta S\left(\mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}\right)$ exp.	146
$\Delta S\left(\mathrm{~J} \mathrm{~kg}^{-1} \mathrm{~K}^{-1}\right)$ exp.	59.2
$\|\Delta V\| \times 10^{-5}\left(\mathrm{~m}^{3} \mathrm{~kg}^{-1}\right)$ exp.	3.23
$\left\|\mathrm{~d} T_{\mathrm{c}} / \mathrm{d} P\right\|\left(\mathrm{K} \mathrm{kbar}^{-1}\right)$ calc.	22.2

Table S4. The parameters of hydrogen-bonding interactions for TMC-2 at 200 K

\mathbf{D}	\mathbf{H}	\mathbf{A}	$\boldsymbol{d}(\mathbf{D} \cdots \mathbf{A}) / \AA$	$\angle \mathbf{D}-\mathbf{H} \cdots \mathbf{A} /{ }^{\circ}$
O1	H1A	$2.950(2)$	146.9	
O1	H1B	N^{b}	$2.872(2)$	153.3
N8	H8A	N^{c}	$3.375(2)$	165.5
N8	H8B	N 4	$3.225(2)$	158.7
N10	H10B	N2		

Symmetry codes: (a) $1-x, 1 / 2+y, 1 / 2-z$; (b) $-1+x, 3 / 2-y,-1 / 2+z$; (c) $1-x,-1 / 2+y, 1 / 2-z$; (d) $+x, 3 / 2-y$, $-1 / 2+z$.

Table S5. Bond Lengths for TMC-2 at 200 K .

Atom Atom	Length/ \AA	Atom Atom		Length/ \AA	
Co1	C 1	$1.897(1)$	N 7	C 11	$1.491(2)$
Co1	C 4	$1.894(2)$	N 7	C 12	$1.496(2)$
Co1	C 2	$1.890(1)$	N 7	C 10	$1.489(2)$
Co1	C 5	$1.902(1)$	N 1	$\mathrm{Na} 1^{\mathrm{c}}$	$2.460(1)$
Co1	C 6	$1.897(2)$	C 4	N 4	$1.148(2)$
Co1	C 3	$1.893(2)$	C 2	N 2	$1.151(2)$
Na 1	O 1	$2.272(1)$	C 5	N 5	$1.149(2)$
Na 1	$\mathrm{~N} 1^{\mathrm{a}}$	$2.460(1)$	N 5	$\mathrm{Na} 1^{\mathrm{d}}$	$2.438(1)$
Na 1	$\mathrm{~N} 5^{\mathrm{b}}$	$2.438(1)$	N 6	C 6	$1.148(2)$
Na 1	N 8	$2.825(1)$	N 10	N 9	$1.460(2)$
Na 1	N 6	$2.480(1)$	N 9	C 8	$1.494(2)$
Na 1	N 10	$3.023(1)$	N 9	C 9	$1.485(2)$
C 1	N 1	$1.150(2)$	N 9	C 7	$1.479(2)$
N 7	N 8	$1.460(2)$	N 3	C 3	$1.148(2)$

Symmetry codes: (a) $1-x,-1 / 2+y, 1 / 2-z$; (b) $-1+x,+y,+z$; (c) $1-x, 1 / 2+y, 1 / 2-z$; (d) $1+x,+y,+z$.

Table S6. Bond Angles for TMC-2 at 200 K .

\angle Atom	Atom	Atom	Angle ${ }^{\circ}$	\angle Atom	Atom	Atom	Angle ${ }^{\circ}$
C1	Col	C5	90.78(6)	N8	Na 1	N10	83.78(4)
C1	Col	C6	89.12(5)	N6	Na 1	N8	83.11(4)
C4	Col	C1	178.38(5)	N6	Na 1	N10	82.88(4)
C4	Col	C5	89.86(6)	N1	C1	Col	176.5(1)
C4	Col	C6	89.36(6)	N8	N7	C11	106.8(1)
C2	Col	C1	87.75(6)	N8	N7	C12	112.2(1)
C2	Col	C4	91.68(6)	N8	N7	C10	106.9(1)
C2	Col	C5	177.19(6)	C11	N7	C12	110.3(1)
C2	Col	C6	89.72(6)	C10	N7	C11	110.7(1)
C2	Col	C3	88.10(6)	C10	N7	C12	109.9(1)
C6	Col	C5	92.65(6)	C1	N1	$\mathrm{Na} 1^{\text {c }}$	147.5(1)
C3	Col	C1	92.06(5)	N4	C4	Col	178.5(1)
C3	Col	C4	89.44(6)	N2	C2	Col	176.1(1)
C3	Col	C5	89.56(6)	N5	C5	Col	176.9(1)
C3	Col	C6	177.48(6)	C5	N5	$\mathrm{Na}^{\text {d }}$	174.8(1)
O1	Na 1	N1 ${ }^{\text {a }}$	100.15(5)	N7	N8	Na 1	126.6(1)
O1	Na 1	N5 ${ }^{\text {b }}$	94.73(5)	C6	N6	Na 1	144.2(1)
O1	Na 1	N8	174.97(5)	N9	N10	Na 1	139.9(1)
O1	Na 1	N6	94.73(5)	N10	N9	C8	113.0(1)
O1	Na 1	N10	91.45(5)	N10	N9	C9	107.3(1)
$\mathrm{N} 1^{\text {a }}$	Na 1	N8	79.86(4)	N10	N9	C7	107.2(1)
$N 1^{\text {a }}$	Na 1	N6	150.13(5)	C9	N9	C8	108.6(1)
$\mathrm{N}^{1}{ }^{\text {a }}$	Na 1	N10	71.07(4)	C7	N9	C8	110.5(2)
$N 5^{\text {b }}$	Na 1	$\mathrm{N}^{\text {a }}$	96.66 (5)	C7	N9	C9	110.2(2)
$N 5^{\text {b }}$	Na 1	N8	90.26(4)	N6	C6	Col	177.9(1)
$N 5^{\text {b }}$	Na 1	N6	107.82(5)	N3	C3	Col	178.1(1)
$N 5^{\text {b }}$	Na 1	N10	167.10(5)				

Symmetry codes: (a) $1-x,-1 / 2+y, 1 / 2-z$; (b) $-1+x,+y,+z$; (c) $1-x, 1 / 2+y, 1 / 2-z$; (d) $1+x,+y,+z$.

Table S7. The parameters of hydrogen-bonding interactions for TMC-2 at 333 K

\mathbf{D}	\mathbf{H}	\mathbf{A}	$\boldsymbol{d}(\mathbf{D} \cdots \mathbf{A}) / \AA$	$\angle \mathbf{D}-\mathbf{H} \cdots \mathbf{A} /{ }^{\circ}$
O1	H1A	N^{a}	$2.908(6)$	99.9
O1	H1B	N^{b}	$3.509(8)$	125.8
N5	H5E	N 1	$3.204(8)$	124.8

Symmetry codes: (a) $1 / 2-x, 3 / 2-y,-1+z$; (b) $x, y,-1+z$;

Table S8. Bond Lengths for TMC-2 at 333 K .

Atom	Atom	Length $/ \AA$	Atom	Atom	Length $/ \AA$
Co 1	C 3	$1.898(3)$	Na 1	O 1	$2.259(6)$
Co 1	C^{a}	$1.898(3)$	N 3	$\mathrm{Na} 1^{\mathrm{b}}$	$2.435(3)$
Co 1	C 2	$1.900(5)$	N 3	C 3	$1.141(5)$
Co 1	$\mathrm{C} 2^{\mathrm{a}}$	$1.900(5)$	C 2	N 2	$1.143(7)$
Co 1	C 1	$1.890(4)$	C 1	N 1	$1.137(5)$
Co 1	C^{a}	$1.890(4)$	N 2	$\mathrm{Na} 1^{\mathrm{c}}$	$2.553(6)$
Na 1	Na^{b}	$1.337(5)$	N 4	C 5	$1.473(3)$
Na 1	$\mathrm{~N} 3^{\mathrm{b}}$	$2.435(3)$	N 4	N 5	$1.482(2)$
Na 1	N 3	$2.435(3)$	N 4	C 4	$1.484(2)$
Na 1	$\mathrm{~N} 2^{\mathrm{c}}$	$2.553(6)$	N 4	C 6	$1.484(2)$

Symmetry codes: (a) 3/2-x, 3/2-y, +z; (b)1/2-x, 3/2-y, $+z$; (c) 1-x, 1-y, 1-z.

Table S9. Bond Angles for TMC-2 at 333 K .

\angle Atom	Atom	Atom	Angle ${ }^{\circ}$	\angle Atom	Atom	Atom	Angle ${ }^{\circ}$
C3	Col	C3 ${ }^{\text {a }}$	93.14(18)	N3	Na 1	$N 3^{\text {b }}$	110.5(2)
C3 ${ }^{\text {a }}$	Col	C2 ${ }^{\text {a }}$	89.49(7)	N3	Na 1	$\mathrm{N} 2^{\text {c }}$	111.8(1)
C3 ${ }^{\text {a }}$	Col	C2	89.49(7)	N3 ${ }^{\text {b }}$	Na 1	N2 ${ }^{\text {c }}$	111.8(1)
C3	Col	C2 ${ }^{\text {a }}$	89.49(7)	O1	Na 1	N3 ${ }^{\text {b }}$	108.3(5)
C3	Col	C2	89.49(7)	O1	Na 1	N3	113.0(4)
C2	Col	C2 ${ }^{\text {a }}$	178.5(2)	O1	Na 1	N2 ${ }^{\text {c }}$	101.3(4)
C1	Col	C3 ${ }^{\text {a }}$	177.7(1)	$\mathrm{Na} 1^{\text {b }}$	N3	Na 1	31.9(1)
C1	Col	C3	89.1(2)	C3	N3	Na 1	161.5(1)
$\mathrm{Cl}^{\text {a }}$	Col	C3 ${ }^{\text {a }}$	89.1(2)	C3	N3	Na1 ${ }^{\text {b }}$	161.5(1)
$\mathrm{Cl}^{\text {a }}$	Col	C3	177.7(1)	N3	C3	Col	177.5(3)
C1	Col	C2	90.5(1)	N2	C2	Col	177.3(3)
C1	Col	C2 ${ }^{\text {a }}$	90.5(1)	N1	C1	Col	178.9(4)
$\mathrm{Cl}^{\text {a }}$	Col	C2 ${ }^{\text {a }}$	90.5(1)	C2	N2	$\mathrm{Na} 1^{\text {c }}$	171.7(3)
$\mathrm{Cl}^{\text {a }}$	Col	C2	90.5(1)	C5	N4	N5	105.5(2)
C1	Col	$\mathrm{Cl}^{\text {a }}$	88.6(2)	C5	N4	C4	105.3(2)
$\mathrm{Na} 1^{\text {b }}$	Na 1	$N 3^{\text {b }}$	74.1(1)	C5	N4	C6	112.2(2)
$\mathrm{Na} 1^{\text {b }}$	Na1	N3	74.1(1)	N5	N4	C4	111.2(2)
$\mathrm{Na} 1^{\text {b }}$	Na 1	N2 ${ }^{\text {c }}$	168.2(1)	N5	N4	C6	111.3(2)
$\mathrm{Na} 1^{\text {b }}$	Na 1	O1	67.0(4)	C6	N4	C4	111.1(1)

Symmetry codes: (a) 3/2-x, 3/2-y, $+z$; (b) $1 / 2-x, 3 / 2-y,+z$; (c) 1-x, 1-y, 1-z.

References

[S1] W. Klemm, W. Brandt, R. Z. Hoppe. Anorg. Allg. Chem. 1961, 308, 179-189.
[S2] G.M. Sheldrick. Acta Cryst. 2015, A71, 3-8.
[S3] O.V. Dolomanov, L.J. Bourhis, R.J. Gildea, J.A.K. Howard, H. Puschmann. J. Appl. Cryst. 2009, 42, 339-341.
[S4] Accelrys, Materials Studio Getting Started, release 5.0; Accelrys Software, Inc: San Diego, CA, 2009.
[S5] K. Aizu. J. Phys. Soc. Jpn. 1970, 28, 706-716.

