Supporting Information

A Novel Chiral Surfactant-Type Metallomicellar Catalyst for Asymmetric Michael Addition in Water
Xinping Lianga ${ }^{\text {a }}$, Yang Gui ${ }^{\text {a }}$, Kuiliang Lia ${ }^{\text {a }}$ Jindong Lia ${ }^{\text {a }}$ Zhenggen Zha ${ }^{a}$, Lei Shi ${ }^{\text {b* }}$ and Zhiyong Wanga*
${ }^{[a]}$ Hefei National Laboratory for Physical Sciences at Microscale, CAS Key Laboratory of Soft Matter Chemistry \& Center for Excellence in Molecular Synthesis of Chinese Academy of Sciences, Collaborative Innovation Center of Suzhou Nano Science and Technology \& School of Chemistry and Materials Science in University of Science and Technology of China, Hefei, Anhui 230026, P. R. China, Fax: (+86)551-63603185, E-mail: zwang3@ustc.edu.cn
${ }^{[b]}$ Hefei National Laboratory for Physical Sciences at the Microscale University of Science and Technology of China, Hefei, 230026, P. R. China. E-mail: leishi@ustc.edu.cn

Table of Contents

1. General Information S-2
2. General procedure for the preparation of L S-2
3. General procedure for the reaction S-6
4. Mechanism study S-6
5. Experimental data of the reaction S-11
6. Copies of ${ }^{1} \mathrm{H}$ NMR, ${ }^{19}$ F NMR and ${ }^{13} \mathrm{C}$ NMR Spectra. S-25
7. Copies of HPLC Traces S-93

1. General Information

${ }^{1} \mathrm{H}$ NMR and ${ }^{13} \mathrm{C}$ NMR were recorded on a 400 MHz Nuclear Magnetic Resonance Spectrometer (${ }^{1} \mathrm{H}$ NMR: $400 \mathrm{MHz},{ }^{13} \mathrm{C}$ NMR: 100 MHz) using TMS as internal reference. The chemical shifts (δ) and coupling constants (J) were expressed in ppm and Hz , respectively. UV-Vis Spectrophotometry was carried out on infrared spectrometer. HPLC analysis was carried out on HPLC with a multiple wavelength detector by commercial chiral columns. Optical rotations were measured on a Polarimeter. HRMS (ESI) were recorded on a Q-TOF Premier. Commercially available compounds were used without further purification. Solvents were purified according to the standard procedures unless otherwise noted.

L2 and L3 were synthetized according to literature as show in S24 ${ }^{1}$. Substrates of 2 were synthetized according to literature as show in S242.

2. General procedure for the preparation of L

a) Preparation for ligand L1, L4, L5

4-bromo-2-(trifluoromethyl)phenol (60 mmol) was added to a oven dried Schlenck flask under nitrogen. Then anhydrous THF (100 mL) and DMF (10 mL) was added as solvent. The solution was cooled to $0^{\circ} \mathrm{C}$ and $\mathrm{NaH}(90 \mathrm{mmol})$ was added, the resulting solution was kept at this temperature for 1 h , then benzyl bromide was (65 mmol) was added slowly, the cooling bath was removed, allowing the reaction mixture to warm up to room temperature overnight. Finally, the reaction mixture was quenched with water $(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$, the organic layers were combined and dried over anhydrous $\mathrm{Na}_{2} \mathrm{SO}_{4}$ and concentrated in vacuo. The crude product $\mathbf{G - 1}$ was obtained as a colorless oil and used for the next step without purification.

To a round bottom flask was added magnesium strips (70.0 mmol), one small crystal of iodine, and 1-(benzyloxy)-4-bromo-2-(trifluoromethyl)benzene (G-1) (5 mmol) in dry THF (15 mL). The reaction mixture was stirred at reflux to start the reaction. A solution of 1-(benzyloxy)-4-bromo-2(trifluoromethyl)benzene (G-1) (55 mmol) in dry THF (50 ml) was added dropwise over 30 min . After addition, the reaction mixture was continued to stirring at reflux for 1.0 hours and cooled to room temperature. Then a solution of long-chain aldehyde (55 mmol) in dry THF (30 ml) was added dropwise to the Grignard reagent at room temperature over 30 min . The resulting mixture was further stirred overnight and was then quenched with saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The product was extracted with ethyl acetate and the combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure and the crude product $\mathbf{G - 2}$ was used for next step without purification.

The alcohol product G-2 obtained was dissolved in toluene (100 mL), and p-toluenesulfonic acid (catalytic amount) was added and the solution was heated to $90-100^{\circ} \mathrm{C}$ until the alcohol disappeared from TLC analysis. The reaction was then cooled to room temperature and quenched by saturated ammonium chloride solution, extracted by ether $(100 \mathrm{~mL} \times 3)$, dried over MgSO_{4}. Then, the reaction was filtered, concentrated in vacuo to give the alkene crude product G-3.

The crude alkene product was dissolved in ethyl alcohol (80 mL), $\mathrm{Pd} / \mathrm{C}(5 \%)$ was added, and the solution was then purged with hydrogen balloon for 15 minutes and then went overnight under hydrogen balloon. Then, the reaction was filtered over a short path of celite, concentrated in vacuo, and the crude mixture was purified by flash column chromatography (hexane) to afford product G-4.

Sodium hydride (2.80 g of a 60% dispersion in mineral oil, 70 mmol) was washed with hexane and transferred to a 2-neck 250 mL round bottom flask under an atmosphere of N_{2}. After addition of anhydrous THF $(50 \mathrm{~mL})$ the slurry was cooled with stirring to $0^{\circ} \mathrm{C}$. To the resulting grey suspension
was added dropwise a solution of G-4 in anhydrous THF (25 mL) at such a rate that the evolution of hydrogen did not become too vigorous. After complete addition the ice bath was removed and the brown reaction mixture stirred for 1 hour. Chloromethylmethyl ether ($5.5 \mathrm{~mL}, 70 \mathrm{mmol}$) was added dropwise and the resulting white suspension stirred overnight. Ice/water (100 mL) was added cautiously and the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$. The combined $\mathrm{Et}_{2} \mathrm{O}$ extracts were washed with $\mathrm{NaOH}(2 \mathrm{M}, 50 \mathrm{~mL}), \mathrm{HCl}(2 \mathrm{M}, 50 \mathrm{~mL})$, and brine $(50 \mathrm{~mL})$. The solution was dried over MgSO_{4} and the solvent was removed in vacuo to yield a colourless liquid. To a solution of the colourless liquid in anhydrous THF (100 mL) at $-78^{\circ} \mathrm{C}$ under an atmosphere of N_{2} was added n butyllithium (24.0 mL of a 2.5 M solution, 60 mmol) dropwise with stirring. After an additional hour stirring at this temperature, a solution of anhydrous DMF ($5.5 \mathrm{~mL}, 70 \mathrm{mmol}$) in anhydrous THF (10 mL) was added to the mixture and the resulting solution was allowed to warm to room temperature and stirred overnight. The yellow solution was hydrolysed by the addition of water $(150 \mathrm{~mL})$ and the mixture extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 150 \mathrm{~mL})$. The combined $\mathrm{Et}_{2} \mathrm{O}$ extracts were then washed with 2 M $\mathrm{HCl}(100 \mathrm{~mL})$ and brine $(100 \mathrm{~mL})$, dried over MgSO_{4} and the solvent was removed in vacuo to yield the corresponding aldehyde. Corresponding aldehyde was dissolved in THF (100 mL) and concentrated $\mathrm{HCl}(10 \mathrm{~mL})$ was added. The mixture was heated to $50^{\circ} \mathrm{C}$ for 4 hours, at which stage TLC analysis (silica, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) indicated the complete disappearance of starting material. The mixture extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50 \mathrm{~mL})$. The combined $\mathrm{Et}_{2} \mathrm{O}$ extracts were then washed with brine $(100 \mathrm{~mL})$, dried over MgSO_{4} and the solvent was removed in vacuo to yield the crude salicylaldehyde derivative G-5.

To a solution of chiral amino alcohol (2 mmol) in methanol (10 mL) was added corresponding salicylaldehyde derivative (2 mmol). The solution was stirred for 2 h at room temperature then the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=5 / 1\right.$ as eluent $)$ to give the corresponding Schiff base ligand $\mathbf{L 1}, \mathbf{L 4}$,
L5.

b) Preparation for ligand L2

To a round bottom flask was added magnesium strips $(0.36 \mathrm{~g}, 15 \mathrm{mmol})$, one small crystal of iodine, and 4-bromo- N, N-dimethylbenzylamine in dry THF (25 mL). The reaction mixture was stirred at reflux to start the reaction. A solution of 4-bromo- N, N-dimethylbenzylamine ($3.20 \mathrm{~g}, 15 \mathrm{mmol}$) in dry THF (5 ml) was added dropwise over 30 min . After addition, the reaction mixture was continued to stirring at reflux for 2 hours and cooled to room temperature. Then a solution of methyl (tert-butoxycarbonyl)-L-phenylalaninate ($1.40 \mathrm{~g}, 5 \mathrm{mmol}$) in dry THF (5 ml) was added dropwise to the Grignard reagent at room temperature over 30 min . The resulting mixture was further stirred overnight and was then quenched with saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The product was extracted with
ethyl acetate and the combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure and the crude product was used for next step without purification.

The crude product in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added 2,2,2-Trifluoroacetic acid (10 mL), then the reaction mixture was stirred at room temperature for 5 h and concentrated under reduced pressure. To the residue was added aqueous $\mathrm{HCl}(2 \mathrm{M}, 5.0 \mathrm{~mL})$ and the mixture was extracted with ethyl acetate (3 x 5 mL). The aqueous layer was basified with aqueous buffer solution of $\mathrm{NH}_{3}(1 \mathrm{M}) / \mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{M})$ and extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic phases were dried over anhydrous sodium sulfate and concentrated under reduced pressure, the crude product was purified by column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NEt}_{3}=100: 10: 1\right)$ to give product

To a solution of chiral amino alcohol (2 mmol) in methanol (10 mL) was added salicylaldehyde derivative (2 mmol). The solution was stirred for 2 h at room temperature then the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=5 / 1\right.$ as eluent) to give the corresponding Schiff base ligand $\mathbf{L} 2$ quantitatively as yellow foam.

c) Preparation for ligand L3

To a round bottom flask was added magnesium strips ($0.36 \mathrm{~g}, 15 \mathrm{mmol}$), one small crystal of iodine, and 2-(4-bromophenyl)- N, N-dimethylethan-1-amine in dry THF (25 mL). The reaction mixture was stirred at reflux to start the reaction. A solution of 2-(4-bromophenyl)- N, N-dimethylethan-1-amine ($3.41 \mathrm{~g}, 15 \mathrm{mmol}$) in dry THF (5 ml) was added dropwise over 30 min . After addition, the reaction mixture was continued to stirring at reflux for 2 hours and cooled to room temperature. Then a solution of methyl (tert-butoxycarbonyl)-L-phenylalaninate ($1.40 \mathrm{~g}, 5 \mathrm{mmol}$) in dry THF (5 ml) was added dropwise to the Grignard reagent at room temperature over 30 min . The resulting mixture was further stirred overnight and was then quenched with saturated aqueous solution of $\mathrm{NH}_{4} \mathrm{Cl}$. The product was extracted with ethyl acetate and the combined organic phase was dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$. The solvent was evaporated under reduced pressure and the crude product was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} / \mathrm{NEt}_{3}=100: 10: 1\right)$ to give tert-butyl (1, 1-bis(4-(2-(dimethylamino)ethyl)phenyl)-1-hydroxy-3-phenylpropan-2-yl)carbamate as a colorless oil $(2.37 \mathrm{~g}$, 87% yield). The product in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$ was added $2,2,2-$ Trifluoroacetic acid $(10 \mathrm{~mL})$, then the reaction mixture was stirred at room temperature for 5 h and concentrated under reduced pressure. To the residue was added aqueous $\mathrm{HCl}(2 \mathrm{M}, 5.0 \mathrm{~mL})$ and the mixture was extracted with ethyl acetate (3 x 5 mL). The aqueous layer was basified with aqueous buffer solution of $\mathrm{NH}_{3}(1 \mathrm{M}) / \mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{M})$ and extracted with dichloromethane ($3 \times 10 \mathrm{~mL}$). The combined organic phases were dried over anhydrous sodium sulfate and concentrated under reduced pressure, the crude product was used for next step without purification.

To a solution of chiral amino alcohol (2 mmol) in methanol (10 mL) was added salicylaldehyde derivative (2 mmol). The solution was stirred for 2 h at room temperature then the solvent was removed under reduced pressure. The residue was purified by silica gel column chromatography $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}=5 / 1\right.$ as eluent) to give the corresponding Schiff base ligand $\mathbf{L 3}$ quantitatively as yellow foam.

3. General procedure for the reaction

A mixture of $\mathbf{L 4}(0.02 \mathrm{mmol}, 14.6 \mathrm{mg}), \mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(0.02 \mathrm{mmol}, 3.7 \mathrm{mg})$ in water $(1.0 \mathrm{~mL})$ was stirred for 1 h at ambient atmosphere. $\mathrm{CHCl}_{3}(50 \mu \mathrm{~L})$ as the oil phase of emulsion was then added to generate the emulsified system. 2-Enoylpyridine 1-oxides and indoles were added to the emulsion and kept at $25^{\circ} \mathrm{C}$ for 24 h and the organic phase was separated after demulsification by adding a small amount of dilute hydrochloric acid ($1 \mathrm{M}, 0.4 \mathrm{~mL}$), the resulting solution was concentrated under reduced pressure, the residue was purified by column chromatograph to afford Michael adducts.

4. Mechanism study

(1) TEM and SEM analyses

1) Preparation of samples

Catalyst: $\mathbf{L 4}(7.2 \mathrm{mg}, 0.01 \mathrm{mmol})$ and $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(3.6 \mathrm{mg} 0.01 \mathrm{mmol})$ were dissolved in 1 mL of $\mathrm{H}_{2} \mathrm{O}$. The mixture was stirred at $25^{\circ} \mathrm{C}$ for $1 \mathrm{~h} . \mathrm{CHCl}_{3}(50 \mu \mathrm{~L})$ as the oil phase of emulsion was then added to generate the emulsified system. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h .
Reaction mixture: After preparing the catalyst, indole (11.7 mg 0.1 mmol) and 2-Enoylpyridine 1oxide (22.5 mg 0.1 mmol) were added to the solution. Then the solution was stirred at $25^{\circ} \mathrm{C}$ for 1 h .

A drop of the colloidal aqueous suspensions was deposited on a carbon-coated copper grid. Then the excess solution was immediately removed with the help of filter paper. The grid was dried in air and then observed by TEM and SEM.
2) SEM analyses (Fig S1)

Fig S1a. Metallomicelles of precatalyst (Zn-L4);

Fig S1b. Metallomicelles of reaction mixture

3). TEM analyses (Fig S2)

Fig S2. Metallomicelles of reaction mixture

(2) XPS analyses

a) Preparation of samples

Sample 1: $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$.
Sample 2: the pre-catalyst was prepared by mixing $\mathbf{L 4}(0.02 \mathrm{mmol})$ and $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(0.02 \mathrm{mmol})$ in water only and stirred for two hours at ambient atmosphere, then evaporated in vacuum.

Sample 3: the pre-catalyst was prepared by mixing $\mathbf{L 4}(0.02 \mathrm{mmol})$ and $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(0.02 \mathrm{mmol})$ in water $(1 \mathrm{ml})$ and stirred for one hour at ambient atmosphere. $\mathrm{CHCl}_{3}(50 \mu \mathrm{~L})$ as the oil phase of emulsion was then added to generate the emulsified system. The water of the metallomicellar catalytic system was removed by anhydrous MgSO_{4}. The oil phase was separated, evaporated in vacuum to obtain the precatalyst.

Sample 4: the pre-catalyst was prepared by mixing $\mathbf{L 4}(0.02 \mathrm{mmol})$ and $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(0.02 \mathrm{mmol})$ in CHCl_{3} only and stirred for two hours at ambient atmosphere, then evaporated in vacuum.

The spectra of the XPS was as showed in Fig S3. The results showed that the binding energy of the Zn 2 P of the precatalyst was decreased compared to that of $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}$, which indicated that electronic density of the Zn^{2+} was increased. This increasement should come from the coordination with the oxygen of the $\mathbf{L 4}$.
b) Spectra of XPS (Fig S3).

Fig S3 Analyses of XPS

(3) The detection of ${ }^{\mathbf{1}} \mathrm{H}$ NMR to confirm the formation of two ammonium salts

The micellar catalytic system was prepared by mixing ligand $4(0.02 \mathrm{mmol})$ and $\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}(0.02$ $\mathrm{mmol})$ in water $(1 \mathrm{~mL})$ and stirred for one hour at ambient atmosphere. $\mathrm{CDCl}_{3}(50 \mu \mathrm{~L})$ as the oil phase of emulsion was then added to generate the emulsified system. The water of the metallomicellar catalytic system was removed by anhydrous MgSO_{4}. The oil phase was separated, evaporated in vacuum to obtain the precatalyst, which was characterized by ${ }^{1} \mathrm{H}$ NMR.
${ }^{1} \mathrm{H}$ NMR response of the precatalyst and ligand $\mathbf{4}$ was listed in Fig S4. It was found that chemical shifts of the methyl groups attached to the N presented in lower field compared to that of $\mathbf{L 4}$, which can be ascribed to the electron-withdrawing effect of the generated ammonium salts.

Fig S4 $\quad{ }^{1} \mathrm{H}$ NMR of the precatalyst (Zn-L4)

(4) The detection of IR to confirm the formation of the ammonium salts

The test of IR to confirm the formation of ammonium salts was shown in Fig S5. The infra-red absorption peak of ammonium salt group could be observed at $1250-1450 \mathrm{~cm}^{-1}$ through comparative analyses of the difference between tertiary amine G-6 and the corresponding nitrate G-7. As to the test of a similar catalytic system $\left(\mathbf{L} \mathbf{2}+\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}\right)$, a strong absorption peak was found at the same wavelength range, that directly revealed the formation of ammonium salts.

Fig S5 IR test of the formation of two ammonium salts

(5) The pH detection

1. General procedure for the pH analyse
(a) Zinc salt (0.01 mmol) was dissolved in 1 mL of $\mathrm{H}_{2} \mathrm{O}$, and the obtained aqueous solution was directly tested by Portable pH meter (Model: S2-Meter, Manufacturer: Mettler-Toledo).
(b) Zinc salt (0.01 mmol) and $\mathbf{L 4}(0.01 \mathrm{mmol})$ was dissolved in 1 mL of $\mathrm{H}_{2} \mathrm{O}$. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h and the obtained aqueous solution was directly tested by Portable pH meter (Model: S2-Meter, Manufacturer: Mettler-Toledo).
(c) Zinc salt (0.01 mmol) and $\mathbf{L 4}(0.01 \mathrm{mmol})$ was dissolved in 1 mL of $\mathrm{H}_{2} \mathrm{O}$. The mixture was stirred at $25^{\circ} \mathrm{C}$ for $1 \mathrm{~h} . \mathrm{CHCl}_{3}(50 \mu \mathrm{~L})$ as the oil phase of emulsion was then added to generate the emulsified system. The mixture was stirred at $25^{\circ} \mathrm{C}$ for 1 h and the obtained emulsion was directly tested by Portable pH meter (Model: S2-Meter, Manufacturer: Mettler-Toledo).
2. Results of the pH test

Z. Procedure	(a)	(b)	(c)
Zinc salt $\quad \mathrm{pH}^{\mathrm{Zn}\left(\mathrm{NO}_{3}\right)_{2}}$	5.45	6.10	5.43
ZnF_{2}	5.68	6.32	5.51
ZnCl_{2}	5.69	6.14	5.54
ZnBr_{2}	5.40	6.15	5.64
ZnSO_{4}	5.56	6.13	5.62

5. Experimental data of the reaction

4-octyl-2-(trifluoromethyl) phenol

87% yield over four steps. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.23-7.19(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.91-6.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~s}, 1 \mathrm{H}), 2.56(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.15(\mathrm{~m}$, $10 \mathrm{H}), 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.4,135.3,133.4$, 128.4-120.2 (q, J $=270.5 \mathrm{~Hz}$), 126.3, 117.6, 116.5-115.6 (q, $J=29.7 \mathrm{~Hz}$), 34.9, 31.9, 31.5, 29.4, 29.24, 29.16, 22.7, 14.1; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-60.7$; HRMS (ESI) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{~F}_{3} \mathrm{O}[\mathrm{M}+\mathrm{H}]^{+}$275.1623, found 275.1628 .

4-dodecyl-2-(trifluoromethyl) phenol

85% yield over four steps. ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.29(\mathrm{~s}, 1 \mathrm{H}), 7.24-7.18(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H})$, $6.90-6.83(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~s}, 1 \mathrm{H}), 2.56(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.70-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.20(\mathrm{~m}$, 18 H), $0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 151.3$, 135.4, 133.4, 128.4-120.2 (q, J $=270.5 \mathrm{~Hz}), 126.3,117.6,116.5-115.6(\mathrm{q}, J=29.7 \mathrm{~Hz}), 34.9,31.9,31.5,29.68,29.66,29.6,29.5$, 29.4, 29.2, 22.7, 14.1; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-60.6$; HRMS (ESI) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{~F}_{3} \mathrm{O}$ $[\mathrm{M}+\mathrm{H}]^{+} 331.2249$, found 331.2235 .

(S, E)-2-(((1,1-bis(4-((dimethylamino)methyl)phenyl)-1-hydroxy-3-phenylpropan-2-yl)imino)

methyl)-4-dodecyl-6-(trifluoromethyl)phenol (L1)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.55(\mathrm{br}, 1 \mathrm{H}), 7.61-7.30(\mathrm{~m}, 8 \mathrm{H}), 7.20-7.10(\mathrm{~m}, 5 \mathrm{H}), 7.00-6.94(\mathrm{~m}$, $2 H), ~ 6.80-6.70(\mathrm{~m}, 1 \mathrm{H}), 4.35-4.29(\mathrm{~m}, 1 \mathrm{H}), 3.50-3.24(\mathrm{~m}, 4 \mathrm{H}), 3.04-2.80(\mathrm{~m}, 3 \mathrm{H}), 2.46-2.41(\mathrm{~m}, 2 \mathrm{H})$,
$2.27(\mathrm{~s}, 6 \mathrm{H}), 2.11(\mathrm{~s}, 6 \mathrm{H}), 1.53-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 18 \mathrm{H}), 0.88(\mathrm{t}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.9,157.4,144.1,142.8,138.8,137.7,137.4,134.5,132.0,129.7,129.3,129.2$, $128.4,127.7,126.4,126.0,125.9,125.0-122.3(\mathrm{q}, J=270.9 \mathrm{~Hz}), 118.8,117.6-117.0(\mathrm{q}, J=30.3 \mathrm{~Hz})$, $79.7,78.9,63.9,63.8,45.4,45.2,37.3,34.6,31.9,31.4,29.7,29.65,29.57,29.44,29.36,29.1,22.7$, 14.1; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.4 ;[\alpha]_{\mathrm{D}}{ }^{25}-66.8$ (c 1.0, CHCl_{3}); HRMS (ESI) m/z calcd for $\mathrm{C}_{47} \mathrm{H}_{63} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 758.4872$, found 758.4878 .

($\boldsymbol{S}, \boldsymbol{E}$)-2-(((1,1-bis(4-((dimethylamino)methyl)phenyl)-1-hydroxy-3-phenylpropan-2-
yl)imino)methyl)-6-(trifluoromethyl)phenol (L2)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.91(\mathrm{br}, 1 \mathrm{H}), 7.64-7.30(\mathrm{~m}, 8 \mathrm{H}), 7.20-7.11(\mathrm{~m}, 5 \mathrm{H}), 7.00-6.94(\mathrm{~m}$, $3 \mathrm{H}), 6.80-6.70(\mathrm{~m}, 1 \mathrm{H}), 4.35-4.31(\mathrm{~m}, 1 \mathrm{H}), 3.51-3.22(\mathrm{~m}, 4 \mathrm{H}), 3.10-3.01(\mathrm{~m}, 2 \mathrm{H}), 2.91-2.79(\mathrm{~m}, 1$ H), $2.24(\mathrm{~s}, 6 \mathrm{H}), 2.11(\mathrm{~s}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.8,160.0,144.0,142.7$, 138.7, 137.7, 137.4, 135.1, 129.9, 129.7, 129.3, 129.2, 128.5, 126.5, 126.0, 125.9, 124.9-122.2 (q, $J=270.0$ $\mathrm{Hz}), 118.8,118.4-117.5(\mathrm{q}, ~ J=30.0 \mathrm{~Hz}), 117.3,79.6,78.7,63.9,63.7,45.4,45.2,37.2$; ${ }^{19}$ F NMR (376 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-62.6$.

(S,E)-2-(((1,1-bis(4-(2-(dimethylamino)ethyl)phenyl)-1-hydroxy-3-phenylpropan-2-yl)imino)methyl)-6-(trifluoromethyl)phenol (L3)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.54-7.50(\mathrm{~m}, 4 \mathrm{H}), 7.40-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.00(\mathrm{~m}, 8 \mathrm{H}), 7.05-6.91$ (m, 3 H), 6.81-6.70 (m, 1 H), 4.31 (d, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.38$ (br, 1 H), $3.08-3.01$ (d, $J=13.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.88-2.72 (m, 4 H), 2.71-2.64 (m, 2 H), 2.62-2.51 (m, 2 H), 2.50-2.41 (m, 2 H), 2.30 (s, 6 H), 2.23 (s,
$6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): δ 165.6, 160.5, 142.9, 141.8, 139.0, 138.9, 138.7, 135.2, 130.0, 129.7, 128.8, 128.6, 128.4, 126.5, 126.3, 126.1, 125.0-122.3 (q, $J=270.9 \mathrm{~Hz}$), 118.8, 118.2-117.9 (q, $J=30.4 \mathrm{~Hz}$), 117.1, $79.4,78.5,61.2,61.1,45.3,45.2,37.3,33.7,33.5 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ-62.6.

(S, E)-2-(((1,1-bis(4-(2-(dimethylamino)ethyl)phenyl)-1-hydroxy-3-phenylpropan-2-yl)imino) methyl)-4-octyl-6-(trifluoromethyl)phenol (L4)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.63(\mathrm{br}, 1 \mathrm{H}), 7.53-7.33(\mathrm{~m}, 6 \mathrm{H}), 7.25-7.00(\mathrm{~m}, 7 \mathrm{H}), 7.00-6.90(\mathrm{~m}$, $2 \mathrm{H}), ~ 6.80-6.78(\mathrm{~m}, 1 \mathrm{H}), ~ 4.35-4.27(\mathrm{~m}, 1 \mathrm{H}), 3.27-3.00(\mathrm{~m}, 2 \mathrm{H}), 2.90-2.70(\mathrm{~m}, 3 \mathrm{H}), 2.69-2.63(\mathrm{~m}, 2$ H), 2.55-2.40 (m, 6 H$), 2.29(\mathrm{~s}, 6 \mathrm{H}), 2.22(\mathrm{~s}, 6 \mathrm{H}), 1.52-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 10 \mathrm{H}), 0.88(\mathrm{t}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.7,157.7,143.0,141.9,139.1,139.0,138.9,134.6,131.9$, 129.7, 129.0, 128.7, 128.6, 128.4, 126.4, 126.3, 126.1, 125.1-122.4 (q, $J=271.0 \mathrm{~Hz}$), 118.8, 117.9$117.3(\mathrm{q}, ~ J=30.0 \mathrm{~Hz}$), 79.5, 78.8, 61.4, 61.2, 45.42, 45.36, 37.4, 34.7, 33.8, 33.7, 31.9, 31.4, 29.4, 29.2, 29.1, 22.7, 14.1; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.3 ;[\alpha]_{\mathrm{D}}{ }^{25}-88.6$ (c 1.0, CHCl_{3}); HRMS (ESI) m / z calcd for $\mathrm{C}_{45} \mathrm{H}_{59} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 730.4559$, found 730.4551.

(S, E)-2-(((1,1-bis(4-(2-(dimethylamino)ethyl)phenyl)-1-hydroxy-3-phenylpropan-2-yl)imino)

methyl)-4-dodecyl-6-(trifluoromethyl)phenol (L5)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.59$ (br, 1 H), 7.53-7.30 (m, 6 H), 7.23-7.00 (m, 7 H), 6.98-6.90 (m, $2 \mathrm{H}), ~ 6.80-6.78$ (m, 1 H), 4.35-4.27 (m, 1 H), 3.10-2.90 (m, 2 H), 2.86-2.70 (m, 3 H), 2.69-2.65 (m, 2 H), 2.55-2.40 (m, 6 H), 2.30 (s, 6 H), 2.23 (s, 6 H), 1.52-1.47 (m, 2 H), 1.26 (s, 18 H), 0.88 (t, J= 6.6 $\mathrm{Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 165.8,157.5,143.0,141.8,139.1,139.0,138.9,134.5,132.0$, 129.7, 128.7, 128.6, 128.4, 126.4, 126.2, 126.0, 125.0-122.3 (q, $J=270.9 \mathrm{~Hz}$), 118.8, 117.9-117.3 (q, $J=30.6 \mathrm{~Hz}$), 79.5, 78.8, 61.3, 61.2, 45.42, 45.36, 37.4, 34.6, 33.8, 33.7, 31.9, 31.4, 29.66, 29.65, 29.58, 29.43, 29.35, 29.1, 22.7, 14.1; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.4 ;[\alpha]_{\mathrm{D}}^{25}-73.8$ (c 1.0, CHCl_{3}); HRMS (ESI) m / z calcd for $\mathrm{C}_{49} \mathrm{H}_{67} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2}[\mathrm{M}+\mathrm{H}]^{+} 786.5185$, found 786.5192 .

(S,E)-4-dodecyl-2-(((1-hydroxy-1,1,3-triphenylpropan-2-yl)imino)methyl)-6-(trifluoromethyl) phenol (L6)

${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 13.53$ (br, 1 H), 7.65-7.32 (m, 8 H), 7.30-7.09 (m, 6 H), 6.97-6.94 (m, $2 \mathrm{H}), 6.79(\mathrm{~s}, 1 \mathrm{H}), 4.37-4.32(\mathrm{~m}, 1 \mathrm{H}), 3.04-3.00(\mathrm{~m}, 1 \mathrm{H}), 2.90-2.82(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.42(\mathrm{~m}, 2 \mathrm{H})$, $1.50(\mathrm{~s}, 2 \mathrm{H}), 1.26(\mathrm{~s}, 18 \mathrm{H}), 0.88(\mathrm{t}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 166.0,157.4$, $145.3,144.0,138.8,134.6,132.1,129.8,128.6,128.4,127.2,127.1,126.4,126.1,126.0,125.0,122.3$, $118.7,117.6,117.379 .7,78.7,37.3,34.6,32.0,31.4,29.7,29.67,29.6,29.5,29.4,29.1,22.7,14.2$; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.4$; $[\alpha]_{\mathrm{D}}{ }^{25}-116.6$ (c 1.0, CHCl_{3}); HRMS (ESI) m/z calcd for $\mathrm{C}_{41} \mathrm{H}_{48} \mathrm{~F}_{3} \mathrm{NO}_{2}[\mathrm{M}+\mathrm{H}]^{+} 644.3715$, found 644.3701 .

(S, $E)$-2-(((1,1-bis(4-(2-(dimethylamino)ethyl)phenyl)-3-phenyl-1-((trimethylsilyl)oxy)propan-2-yl)imino)methyl)-4-octyl-6-(trifluoromethyl)phenol (L7)
${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 13.59(\mathrm{br}, 1 \mathrm{H}), 7.72(\mathrm{~s}, 1 \mathrm{H}), 7.54-7.52(2 \mathrm{H}), 7.47-7.11(\mathrm{~m}, 10 \mathrm{H}), 6.99-$ $6.96(2 \mathrm{H}), 6.91(\mathrm{~s}, 1 \mathrm{H}), 4.23-4.19(\mathrm{~d}, 1 \mathrm{H}), 3.38-3.33(2 \mathrm{H}), 2.93-2.83(\mathrm{~m}, 4 \mathrm{H}), 2.71-2.66(\mathrm{~m}, 4 \mathrm{H})$, 2.66-2.52 (t, 2 H$), 2.40-2.38(12 \mathrm{H}), 1.52(2 \mathrm{H}), 1.27(10 \mathrm{H}), 0.90-0.86(3 \mathrm{H}),-0.18(9 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 164.8,140.4,140.2,139.1,139.0,134.4,131.4,130.8,129.5,129.3,129.1,128.2$, $127.8,126.1,118.8,82.4,61.0,60.9,45.1,44.9,37.8,34.5,33.4,33.3,31.7,31.3,29.3,29.1,29.0$, $22.5,13.9,1.7 ;{ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-62.3$; HRMS (ESI) m/z calcd for $\mathrm{C}_{48} \mathrm{H}_{66} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Si}$ $[\mathrm{M}+\mathrm{H}]^{+} 802.4955$, found 802.4961 .

(R)-2-(3-(1H-indol-3-yl)-3-phenylpropanoyl)pyridine 1-oxide (4a)

The title compound was prepared according to the general working procedure and purified by column chromatography to give the product as a white solid in 90% yield. $[\alpha]_{\mathrm{D}}{ }^{25}=19.2$ ($c=1.0$, THF, 94% ee). HPLC on Chiralpak AD-H column, hexane $/ 2$-propanol $=80: 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}$ $=26.50 \mathrm{~min}$ (major) and 31.25 min (minor); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.29-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.50-$ $7.35(\mathrm{~m}, 1 \mathrm{H}), 7.32-7.18(\mathrm{~m}, 6 \mathrm{H}), 7.15-6.90(\mathrm{~m}, 6 \mathrm{H}), 4.93(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.05(\mathrm{dd}, J=16.8$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.99-3.93 (dd, $J=16.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 197.1, 147.1, 143.9, $140.1,136.5,128.4,127.9,127.5,126.7,126.5,126.4,125.7,122.1,121.6,119.5,119.4,118.7,111.1$, 49.1, 38.6.

(R)-2-(3-(4-fluorophenyl)-3-(1H-indol-3-yl)propanoyl)pyridine 1-oxide (4b)

The title compound was prepared according to the general working procedure and purified by column chromatography to give the product as a white solid in 95% yield. $[\alpha]_{\mathrm{D}}{ }^{25}=11.7$ ($c=1.0$, in THF, 91% ee). HPLC on Chiralpak AD-H column, hexane $/ 2$-propanol $=80: 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$; t_{R} $=25.15 \mathrm{~min}$ (major) and 32.66 min (minor); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.29-8.08(\mathrm{~m}, 2 \mathrm{H})$, $7.41-$ $7.32(\mathrm{~m}, 1 \mathrm{H}), 7.30-7.18(\mathrm{~m}, 5 \mathrm{H}), 7.15-7.01(\mathrm{~m}, 3 \mathrm{H}), 7.01-6.90(\mathrm{~m}, 1 \mathrm{H}), 6.90-6.80(\mathrm{~m}, 2 \mathrm{H}), 4.93(\mathrm{t}, J$ $=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.03(\mathrm{dd}, J=16.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.92(\mathrm{dd}, J=16.8,8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.7,162.6-160.2(\mathrm{~d}, J=242.7 \mathrm{~Hz}), 146.9,140.2,139.7-139.6(\mathrm{~d}, J=3.2 \mathrm{~Hz})$, 136.6, 129.4-129.3 (d, $J=7.9 \mathrm{~Hz}), 127.7,126.7,126.5,125.7,122.2,121.6,119.44-119.37$ (d, $J=6.2$ $\mathrm{Hz}), 118.6,115.2,115.0,111.1,49.2,37.7 ;{ }^{19} \mathrm{~F}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-113.7$.

(R)-2-(3-(4-chlorophenyl)-3-(1H-indol-3-yl)propanoyl)pyridine 1-oxide (4c)

The title compound was prepared according to the general working procedure and purified by column chromatography to give the product as a white solid in 94% yield. $[\alpha]_{\mathrm{D}}{ }^{25}=17.9$ ($\mathrm{c}=1.0, \mathrm{THF}, 97 \% \mathrm{ee}$). HPLC on Daicel Chiralpak AD-H column, n-hexane $/ 2$-propanol $=80: 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 254$ $\mathrm{nm} ; \mathrm{t}_{\mathrm{R}}=26.97 \mathrm{~min}$ (major) and 36.95 min (minor); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21-8.11(\mathrm{~m}, 2 \mathrm{H})$, 7.32-7.18 (m, 1H), 7.22-6.95 (m, 10 H$), ~ 6.95-6.80(\mathrm{~m}, 1 \mathrm{H}), 4.85(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-3.96(\mathrm{dd}, J$ $=16.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92-3.85(\mathrm{dd}, J=16.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.5,145.8$, $141.5,139.2,135.5,130.9,128.3,127.4,126.7,125.7,125.4,124.7,121.2,120.6,118.4,118.3,117.2$, 110.1, 47.9, 36.7.

(R)-2-(3-(4-bromophenyl)-3-(1H-indol-3-yl)propanoyl)pyridine 1-oxide (4d)

The title compound was prepared according to the general working procedure and purified by column chromatography to give the product as a white solid in 95% yield. $[\alpha]_{\mathrm{D}}{ }^{25}=16.1$ ($c=1.0$, THF, 97% ee). HPLC on Chiralpak AD-H column, hexane $/ 2$-propanol $=80: 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}$ $=30.13 \mathrm{~min}$ (major) and 41.18 min (minor); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20-8.11(\mathrm{~m}, 2 \mathrm{H})$, 7.426.93 (m, 12 H), $4.92(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.04(\mathrm{dd}, J=16.8,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-3.93(\mathrm{dd}, J=16.4$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.4,146.8,143.0,140.3,136.5,131.4,129.7,127.8$, $126.8,126.5,125.6,122.3,121.6,120.1,119.5,119.3,118.2,111.0,48.9,37.8$.

(R)-2-(3-(1H-indol-3-yl)-3-(4-(trifluoromethyl)phenyl)propanoyl)pyridine 1-oxide (4e)

The title compound was prepared according to the general working procedure and purified by column chromatography to give the product as a white solid in 93% yield. $[\alpha]_{\mathrm{D}}{ }^{25}=10.5(c=1.0$, THF, 95% ee). HPLC on Chiralpak AD-H column, hexane $/ 2$-propanol $=80: 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$; t_{R} $=18.65 \mathrm{~min}$ (major) and 23.85 min (minor) ${ }^{1}{ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 10.95(\mathrm{~s}, 1 \mathrm{H}), 8.33-8.31$ (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.61-7.50(\mathrm{~m}, 5 \mathrm{H}), 7.39-7.27(\mathrm{~m}, 5 \mathrm{H}), 7.03(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.89(\mathrm{t}, J=7.8 \mathrm{~Hz}$, $1 \mathrm{H})$, 4.95-4.90 (m, 1H), 4.09-4.07 (m, 1H), 4.03-3.88 (m, 1H); ${ }^{13} \mathrm{C}$ NMR (100 MHz , DMSO- d_{6}) δ $197.3,150.0,146.6,140.6,136.9,129.0,128.9-120.8(\mathrm{q}, J=270.0 \mathrm{~Hz}), 127.6-126.7$ (q, $J=30.0 \mathrm{~Hz}$), $126.6,126.4,126.3,125.54,125.50,122.8,121.6,118.9,117.0,111.9,79.6,48.1,37.9 .{ }^{19}$ F NMR (376 MHz , DMSO- d_{6}) $\delta-60.7$; HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 433.1140$, found 433.1136.

(R)-2-(3-(1H-indol-3-yl)-3-(p-tolyl)propanoyl)pyridine 1-oxide (4f)

The title compound was prepared according to the general working procedure and purified by column chromatography to give the product as a white solid in 95% yield. $[\alpha]_{\mathrm{D}}{ }^{25}=7.3(c=1.0, \mathrm{THF}, 93 \% \mathrm{ee})$. HPLC on Chiralpak AD-H column, hexane $/ 2$-propanol $=80: 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=$ 25.29 min (major) and 32.69 min (minor); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16-8.14$ (d, $J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 8.01(\mathrm{~s}, 1 \mathrm{H}), 7.45-7.42(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.32-6.90(\mathrm{~m}, 11 \mathrm{H}), 4.89(\mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-$ 4.04 (dd, $J=16.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.91(\mathrm{dd}, J=16.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.26(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta 197.2,140.8,136.5,135.8,129.1,127.7,127.5,126.7,126.6,125.6,122.1,121.5,119.5$, 119.4, 119.1, 111.0, 49.1, 38.1, 21.0.

(R)-2-(3-(1H-indol-3-yl)-3-(4-methoxyphenyl)propanoyl)pyridine 1-oxide (4g)

The title compound was prepared according to the general working procedure and purified by column chromatography to give the product as a white solid in 92% yield. $[\alpha]_{\mathrm{D}}{ }^{25}=17.0$ ($c=1.0$, THF, 87% ee). HPLC on Daicel Chiralpak AD-H column, n-hexane $/ 2$-propanol $=80: 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, $254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=40.92 \mathrm{~min}$ (major) and 47.16 min (minor); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20-8.09(\mathrm{~m}$, $2 \mathrm{H}), 7.45-7.39(\mathrm{~m}, 1 \mathrm{H}), 7.30-6.95(\mathrm{~m}, 9 \mathrm{H}), 6.80-6.69(\mathrm{~m}, 2 \mathrm{H}), 4.88(\mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-4.03(\mathrm{dd}$, $J=16.0,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.90(\mathrm{dd}, J=16.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.3,158.0,147.2,140.1,136.6,136.0,128.9,127.5,126.7,126.5,125.6,122.0,121.5,119.5$, 119.3, 119.1, 114.4, 113.7, 111.1, 55.2, 49.2, 37.8 .

(S)-2-(3-(2-fluorophenyl)-3-(1H-indol-3-yl)propanoyl)pyridine 1-oxide (4h)

The title compound was prepared according to the general working procedure and purified by column chromatography to give the product as a white solid in 89% yield. $[\alpha]_{\mathrm{D}}{ }^{25}=-13.3$ ($c=1.0$, THF, 93% ee). HPLC on Chiralpak AD-H column, hexane $/ 2$-propanol $=80: 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}$ $=25.86 \mathrm{~min}$ (major) and 35.89 min (minor); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.06-8.05(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.44-7.42(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.13(\mathrm{~m}, 4 \mathrm{H}), 7.05-7.01(\mathrm{~m}, 4 \mathrm{H}), 6.95-6.85(\mathrm{~m}$, $3 \mathrm{H}), 5.19(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.10(\mathrm{dd}, J=17.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89-3.83(\mathrm{dd}, J=17.0,7.8 \mathrm{~Hz}$, 1H). ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.4,161.7-159.3$ (d, $J=244.1 \mathrm{~Hz}$), $146.8,140.2,136.4,130.8-$ $130.6(\mathrm{~d}, J=13.9 \mathrm{~Hz}), 129.5-129.4(\mathrm{~d}, J=4.2 \mathrm{~Hz}), 128.0-127.9(\mathrm{~d}, J=7.6 \mathrm{~Hz}), 127.7,126.6,125.8$, 124.2-124.1 (d, $J=3.3 \mathrm{~Hz}$), 122.1, 121.9, 119.4, 119.2, 117.6, 115.5, 115.3, 111.2, 47.7, 31.2; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-118.6$.

(S)-2-(3-(2-chlorophenyl)-3-(1H-indol-3-yl)propanoyl)pyridine 1-oxide (4i)

The title compound was prepared according to the general working procedure and purified by column chromatography to give the product as a white solid in 90% yield. $[\alpha]_{\mathrm{D}}{ }^{25}=-73.7(c=1.0$, THF, 90% ee). HPLC on Chiralpak AD-H column, hexane $/ 2$-propanol $=80: 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$; t_{R} $=23.73 \mathrm{~min}$ (major) and 30.57 min (minor); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.27(\mathrm{~s}, 1 \mathrm{H}), 8.15-8.12(\mathrm{~m}$, $1 \mathrm{H}), 7.49-7.47(\mathrm{~d}, ~ J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.16(\mathrm{~m}, 5 \mathrm{H}), 7.15-6.95(\mathrm{~m}, 6 \mathrm{H}), 5.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.27-4.21 (dd, $J=17.0,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.77(\mathrm{dd}, J=17.0,6.9 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.3,146.9,141.1,140.2,136.5,133.5,129.5,129.3,127.7,127.6,127.0,126.7,126.6,125.9$, 122.3, 122.1, 119.5, 117.6, 111.2, 47.8, 34.6.

(S)-2-(3-(2-bromophenyl)-3-(1H-indol-3-yl)propanoyl)pyridine 1-oxide (4j)

The title compound was prepared according to the general working procedure and purified by column chromatography to give the product as a white solid in 94% yield. $[\alpha]_{D}{ }^{25}=-49.6(c=1.0$, THF, 92%
ee). HPLC on Chiralpak OD-H column, hexane $/ 2$-propanol $=80: 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}$ $=24.74 \mathrm{~min}$ (major) and 31.36 min (minor); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.40(\mathrm{~s}, 1 \mathrm{H}), 8.12-8.11(\mathrm{~d}$, $J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.51-7.47(\mathrm{~m}, 2 \mathrm{H}), 7.25-6.94(\mathrm{~m}, 10 \mathrm{H}), 5.43(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-4.20(\mathrm{dd}, J=$ $16.8,8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.73(\mathrm{dd}, J=16.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.2,142.8$, $136.6,132.9,129.5,128.0,127.6126 .7,126.5,124.4,122.4,122.1,119.6,119.4,117.5,111.2,48.0$, 37.5.

(S)-2-(3-(1H-indol-3-yl)-3-(2-methoxyphenyl)propanoyl)pyridine 1-oxide (4k)

The title compound was prepared according to the general working procedure and purified by column chromatography to give the product as a white solid in 91% yield. $[\alpha]_{\mathrm{D}}{ }^{25}=16.6(c=1.0, \mathrm{THF}, 84 \%$ ee). HPLC on Chiralpak AD-H column, hexane $/ 2-$ propanol $=80: 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}$ $=27.7 \mathrm{~min}$ (minor) and 38.5 min (major); ${ }^{1} \mathrm{H} \mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.30(\mathrm{~s}, 1 \mathrm{H}), 8.10-8.09(\mathrm{~d}, J$ $=6.4,1 \mathrm{H}), 7.51-7.49(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-6.94(\mathrm{~m}, 9 \mathrm{H}), 6.80-6.72(\mathrm{~m}, 2 \mathrm{H}), 5.35(\mathrm{t}, J=7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.18-4.12(\mathrm{dd}, J=8.3,16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.70(\mathrm{dd}, J=7.3,16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 197.5,156.7,147.3,140.0,136.5,131.9,128.6,127.4,127.3,127.0,126.3,125.6$, $122.1,121.9,120.6,119.6,119.2,118.4,111.0,110.5,55.4,47.7,31.4 ;$ HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+} 395.1372$, found 395.1366.

(R)-2-(3-(1H-indol-3-yl)-3-(2-(trifluoromethyl)phenyl)propanoyl)pyridine 1-oxide (4I)

The title compound was prepared according to the general working procedure and purified by column chromatography to give the product as a white solid in 93% yield. $[\alpha]_{\mathrm{D}}{ }^{25}=17.3(c=1.0, \mathrm{THF}, 90 \%$ ee). HPLC on Chiralpak OD-H column, hexane/2-propanol $=80: 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}$ $=21.11 \mathrm{~min}$ (major) and 29.88 min (minor); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.28(\mathrm{~s}, 1 \mathrm{H}), 8.16-8.14(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.65-7.62(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.41-6.94(\mathrm{~m}, 11 \mathrm{H}), 5.46-5.42(\mathrm{dd}, J=4.4,9.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.45-4.38(\mathrm{dd}, J=10,17.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.48(\mathrm{dd}, J=4.5,17.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$
$\delta 195.5,146.8,143.1,140.3,136.7,132.0,129.9,128.9-120.7(\mathrm{q}, J=272.4 \mathrm{~Hz}), 127.9-127.1$ (q) $J=$ $26.7 \mathrm{~Hz}), 127.8,126.7,126.6,126.4,126.0,125.9-125.8$ (q, $J=6.0 \mathrm{~Hz}$), 122.6, 122.1, 119.5, 119.4, 117.7, 111.1, 49.1, 33.6; ${ }^{19} \mathrm{~F}$ NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-125.2$; HRMS (ESI) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+} 433.1140$, found 433.1138 .

(R)-2-(3-(1H-indol-3-yl)-3-(3-methoxyphenyl)propanoyl)pyridine 1-oxide (4m)

The title compound was prepared according to the general working procedure and purified by column chromatography to give the product as a white solid in 92% yield. $[\alpha]_{\mathrm{D}}{ }^{25}=13.4$ ($c=1.0$, THF, 90% ee). HPLC on Chiralpak AD-H column, hexane $/ 2$-propanol $=80: 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}$ $=30.98 \mathrm{~min}$ (major) and 33.44 min (minor); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.17(\mathrm{~s}, 1 \mathrm{H}), 8.15-8.12(\mathrm{~d}$, $J=6.4,1 \mathrm{H}), 7.47-7.44(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.29-6.85(\mathrm{~m}, 10 \mathrm{H}), 6.69-6.65(\mathrm{dd}, J=2.0,8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.91(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.04(\mathrm{dd}, J=7.6,16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.91$ (dd, $J=8.0 \mathrm{~Hz}, 16.6,1 \mathrm{H})$, $3.70(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.1,159.6,147.1,145.5,140.1,136.5,129.3,127.5$, 126.7, 126.6, 125.6, 122.1, 121.6, 120.4, 119.43, 119.38, 118.6, 113.8, 111.6, 111.1, 55.1, 49.0, 38.6; HRMS (ESI) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{3}[\mathrm{M}+\mathrm{Na}]^{+}$395.1372, found 395.1367.

(\boldsymbol{R})-2-(3-(1H-indol-3-yl)-3-(naphthalen-2-yl)propanoyl)pyridine 1-oxide (4n)

The title compound was prepared according to the general working procedure and purified by column chromatography to give the product as a white solid in 95% yield. $[\alpha]_{\mathrm{D}}{ }^{25}=-36.4$ ($c=1.0$, THF, 97% ee). HPLC on Chiralpak AD-H column, hexane $/ 2$-propanol $=80: 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}$ $=40.64 \mathrm{~min}$ (minor) and 46.06 min (major); ${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.21-8.01(\mathrm{~m}, 2 \mathrm{H}), 7.80-$ $7.61(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.31(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.12-6.88(\mathrm{~m}, 5 \mathrm{H}), 5.10(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-$ $3.89(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.0,147.0,141.3,140.1,136.5,133.4,132.3,128.1$, $127.8,127.5,126.7,126.62,126.57,126.1,125.9,125.6,125.4,122.1,121.7,119.5,119.4,118.7$, 111.0, 48.9, 38.7.

(S)-2-(3-(1H-indol-3-yl)-3-(thiophen-2-yl)propanoyl)pyridine 1-oxide (4o)

The title compound was prepared according to the general working procedure and purified by column chromatography to give the product as a white solid in 88% yield. $[\alpha]_{\mathrm{D}}{ }^{25}=19.3$ ($c=1.0$, THF, 92% ee). HPLC on Chiralpak AD-H column, hexane $/ 2$-propanol $=80: 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$; t_{R} $=29.11 \mathrm{~min}$ (major) and 31.26 min (minor); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.20(\mathrm{~s}, 1 \mathrm{H}), 8.06-8.04(\mathrm{~d}$, $J=6.2,1 \mathrm{H}), 7.47-7.44(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-6.75(\mathrm{~m}, 10 \mathrm{H}), 5.17(\mathrm{t}, J=7.5,1 \mathrm{H}), 4.10-4.03(\mathrm{dd}, J$ $=7.3,16.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.92(\mathrm{dd}, J=7.9,16.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 196.5,148.4$, $146.9,140.1,136.4,127.7,126.6,126.5,126.3,125.7,124.3,123.6,122.2,121.8,119.5,119.3,118.5$, 111.2, 50.0, 33.9; HRMS (ESI) m/z calcd for $\mathrm{C}_{20} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{NaO}_{2} \mathrm{~S}[\mathrm{M}+\mathrm{Na}]^{+} 371.0830$, found 371.0827 .

(R)-2-(3-(5-fluoro-1H-indol-3-yl)-3-phenylpropanoyl)pyridine 1-oxide (4p)

The title compound was prepared according to the general working procedure and purified by column chromatography to give the product as a white solid in 95% yield. $[\alpha]_{D}{ }^{25}=20.1(c=1.0$, THF, 96% ee). HPLC on Chiralpak AD-H column, hexane $/ 2$-propanol $=80: 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm}$; t_{R} $=20.78 \mathrm{~min}$ (major) and 23.09 min (minor); ${ }^{1} \mathrm{H}$ NMR (400 MHz , DMSO- d_{6}) $\delta 10.98(\mathrm{~s}, 1 \mathrm{H}), 8.33-8.31$ $(\mathrm{d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.38-7.00(\mathrm{~m}, 10 \mathrm{H}), 6.89-6.83(\mathrm{~m}, 1 \mathrm{H}), 4.76-4.71(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.05-3.98(\mathrm{dd}, J=8.0,16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.74(\mathrm{dd}, J=7.4,16.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 197.6,158.1-155.8(\mathrm{~d}, J=229.7 \mathrm{~Hz}), 146.8,144.7,140.5,133.5,128.9,128.7$, $128.1,126.95-126.85(\mathrm{~d}, J=9.6 \mathrm{~Hz}), 126.5,126.30,126.25,124.7,118.1-118.0(\mathrm{~d}, J=4.9 \mathrm{~Hz}), 112.8-$ 112.7 (d, $J=9.8 \mathrm{~Hz}$), 109.7-109.4 (d, $J=26.1 \mathrm{~Hz}$), 103.8-103.6 (d, $J=23.0 \mathrm{~Hz}), 48.4,38.0 ;{ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{DMSO}-d_{6}$) $\delta-124.4$.

(R)-2-(3-(5-chloro-1H-indol-3-yl)-3-phenylpropanoyl)pyridine 1-oxide (4q)

The title compound was prepared according to the general working procedure and purified by column chromatography to give the product as a white solid in 92% yield. $[\alpha]_{D}{ }^{25}=40.0$ ($c=1.0$, THF, 98% ee). HPLC on Chiralpak AD-H column, hexane $/ 2$-propanol $=80: 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}$ $=19.15 \mathrm{~min}$ (major) and 22.02 min (minor); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.09(\mathrm{~s}, 1 \mathrm{H}), 8.33-$ $8.31(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.42-6.95(\mathrm{~m}, 11 \mathrm{H}), 4.76-4.71(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-$ $3.98(\mathrm{dd}, J=8.4,17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.73(\mathrm{dd}, J=7.2,16.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (400 MHz, DMSO- d_{6}) $\delta 197.6,146.7,144.7,140.6,135.3,128.9,128.7,128.1,127.9,126.6,126.34,126.29,124.5,123.4$, 121.4, 118.2, 117.7, 113.4, 48.5, 37.8.

(R)-2-(3-(5-bromo-1H-indol-3-yl)-3-phenylpropanoyl)pyridine 1-oxide (4r)

The title compound was prepared according to the general working procedure and purified by column chromatography to give the product as a white solid in 93% yield. $[\alpha]_{\mathrm{D}}{ }^{25}=55.4$ ($c=1.0$, THF, 98% ee). HPLC on Chiralpak AD-H column, hexane $/ 2$-propanol $=80: 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}$ $=19.25 \mathrm{~min}$ (major) and 22.64 min (minor); ${ }^{1} \mathrm{H}$ NMR (400 MHz, DMSO- d_{6}) $\delta 11.1(\mathrm{~s}, 1 \mathrm{H}), 8.34-8.32$ (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.60-7.08(\mathrm{~m}, 12 \mathrm{H}), 4.79-4.75(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-3.98(\mathrm{dd}, J=8.2,17.0 \mathrm{~Hz}$, 1 H), 3.79-3.73 (dd, $J=7.2,16.9 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR (100 MHz, DMSO- d_{6}) $\delta 197.5,146.8,144.7$, $140.6,135.5,128.9,128.7,128.6,128.1,126.6,126.4,126.3,124.4,124.0,121.2,117.6,113.9,111.4$, 48.5, 37.8.

(R)-2-(3-(5-methoxy-1H-indol-3-yl)-3-phenylpropanoyl)pyridine 1-oxide (4s)

The title compound was prepared according to the general working procedure and purified by column chromatography to give the product as a white solid in 90% yield. $[\alpha]_{\mathrm{D}}{ }^{25}=36.4$ ($c=1.0$, THF, 90% ee). HPLC on Daicel Chiralpak AD-H column, n-hexane $/ 2$-propanol $=80: 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}$, $254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}=27.49 \mathrm{~min}$ (major) and 33.57 min (minor); ${ }^{1} \mathrm{H}$ NMR ($400 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 8.16-8.11$ (m, $2 \mathrm{H}), 7.35-6.98(\mathrm{~m}, 10 \mathrm{H}), 6.85-6.84(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.77-6.74(\mathrm{~m}, 1 \mathrm{H}), 4.87(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H})$, 4.11-4.05 (dd, $J=7.6,16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.90(\mathrm{dd}, J=8.0,16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (100 $\mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 197.2,153.7,147.1,143.8,140.0,131.7,128.4,127.9,127.6,127.1,126.5,126.4$, $125.7,122.4,118.3,122.2,111.8,101.3,55.8,49.0,38.6$.

(R)-2-(3-(5-acetyl-1H-indol-3-yl)-3-phenylpropanoyl)pyridine 1-oxide (4t)

The title compound was prepared according to the general working procedure and purified by column chromatography to give the product as a white solid in 90% yield. $[\alpha]_{\mathrm{D}}{ }^{25}=33.1$ ($c=1.0$, THF, 83% ee). HPLC on Chiralpak AD-H column, hexane $/ 2$-propanol $=80: 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}$ $=22.27 \mathrm{~min}$ (major) and 25.50 min (minor); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.72(\mathrm{~s}, 1 \mathrm{H}), 8.12(\mathrm{~s}, 1 \mathrm{H})$, 8.09-8.07 (d, $J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.74-7.71(\mathrm{dd}, J=1.4,8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.24-7.01(\mathrm{~m}, 10 \mathrm{H}), 4.91(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 1 \mathrm{H}$), 4.03-3.96 (dd, $J=7.6,16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.87$ (dd, $J=7.8,16.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.79 (s, 3 H); ${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.6,168.2,146.9,143.5,140.2,139.1,128.5,127.8,127.7,126.6,126.5$, 126.3, 125.9, 123.5, 123.0, 122.2, 121.4, 120.1, 110.9, 51.9, 49.2, 38.1; HRMS (ESI) m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{20} \mathrm{NaN}_{2} \mathrm{O}_{4}[\mathrm{M}+\mathrm{Na}]^{+} 423.1321$, found 423.1315 .

(R)-2-(3-(6-chloro-1H-indol-3-yl)-3-phenylpropanoyl)pyridine 1-oxide (4u)

The title compound was prepared according to the general working procedure and purified by column chromatography to give the product as a white solid in 93% yield. $[\alpha]_{\mathrm{D}}{ }^{25}=36.5$ ($c=1.0$, THF, 96% ee). HPLC on Chiralpak AD-H column, hexane $/ 2$-propanol $=80: 20$, flow rate $1.0 \mathrm{~mL} / \mathrm{min}, 254 \mathrm{~nm} ; \mathrm{t}_{\mathrm{R}}$
$=26.41 \mathrm{~min}$ (major) and 30.16 min (minor); ${ }^{1} \mathrm{H}$ NMR $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.22(\mathrm{~s}, 1 \mathrm{H}), 8.17-8.15(\mathrm{~d}$, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-7.08(\mathrm{~m}, 11 \mathrm{H}), 6.95-6.92(\mathrm{dd}, J=1.8,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.90(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.12-4.05 (dd, $J=7.6,16.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.88(\mathrm{dd}, J=7.8,16.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.8,147.0,143.5,140.2,136.9,128.5,128.0,127.8,127.7,126.6,126.5,125.8,125.3,122.2$, $120.4,120.1,119.0,111.0,49.0,38.3$; HRMS (ESI) m/z calcd for $\mathrm{C}_{22} \mathrm{H}_{17} \mathrm{ClN}_{2} \mathrm{NaO}_{2}[\mathrm{M}+\mathrm{Na}]^{+}$ 399.0876, found 399.0873.

References

1. Y. Gui, Y. Li, J. Sun, Z. Zha, Z. Wang, J. Org. Chem. 2018, 83, 7491-7499.
2. P. Singh, V. Singh, Org. Lett. 2008, 10, 4121-4124.
3. Copies of ${ }^{1} \mathrm{H}$ NMR, ${ }^{19} \mathrm{~F}$ NMR and ${ }^{13} \mathrm{C}$ NMR Spectra

-120

7. Copies of HPLC Traces

$4 \mathbf{a}$

Signal 4: DAD1 D, Sig=240, 16 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\text { min }]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mA}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [maU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	26.668	BB	0.7982	2.17536 e 4	427.09064	50.0074
2	31.390	BB	0.9614	2.17472 e 4	355.64304	49.9926
Totals :				4.35008 e 4	782.73367	

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=240, 16 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\text { min }]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mu}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [maU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	26.496	VB	0.8746	1.80353 e 5	3379.63232	97.0775
2	31.253	BP	0.9935	5429.47998	81.89258	2.9225
Total	3 :			1.85782 e 5	3461.52490	

Results obtained with enhanced integrator!

4b

Signal 4: DAD1 D, Sig=240, 16 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{maU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [muU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	25.116	VV	0.6698	9516.56641	216.06914	50.9274
2	32.720	BP	0.8954	9169.95801	155.63040	49.0726
Total	s :			1.86865 e 4	371.69954	

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig $=240,16$ Ref $=360,100$

Peak $\#$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{ma}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [muU]	$\begin{gathered} \text { Area } \\ \frac{8}{8} \end{gathered}$
1	25.155	VV	0.4595	7.34546 e 4	2410.69580	95.4372
2	32.662	VB	0.8615	3511.81470	58.40101	4.5628
Totals :				7.69664 e 4	2469.09681	

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=240, 16 Ref $=360,100$

Peak \#	RetTime [min]	Type	$\begin{gathered} \text { Width } \\ \text { [min] } \end{gathered}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mA}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	26.825	V	0.7778	4348.51074	84.85949	51.8095
2	37.006	VBA	1.0383	4044.76196	57.95084	48.1905
Total	3 :			8393.27271	142.81033	

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=240, 16 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mu}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [maU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	26.967	VV	0.6546	1.57520 e 5	3386.75244	98.5055
2	36.949	V	0.9573	2389.81201	33.29876	1.49

Totals :
$1.59910 \mathrm{e} 5 \quad 3420.05120$
Results obtained with enhanced integrator!

4d

Signal 4: DAD1 D, Sig=240, 16 Ref=360, 100

Peak \#	$\begin{gathered} \text { RetTime } \\ \text { [min] } \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{ma}^{*} \mathrm{~s}\right]} \end{gathered}$	$\begin{aligned} & \text { Heicht } \\ & {[\mathrm{mu} \mathrm{U}]} \end{aligned}$	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	29.684	VB	0.9463	4513.34863	72.89516	50.9745
2	40.427	PV	1.2149	4340.78711	51.31431	49.0255

Totals : 8854.13574 124.20947

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=240, 16 Ref $=360,100$

Peak \#	$\begin{gathered} \text { RetTime } \\ {[\text { min }]} \end{gathered}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{ma}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mad]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	30.131		0.6103	4.97986 e 4	1103.86926	98.5906
2	41.181		1.0746	711.88721	7.87502	1.4094
Total				5.0510 .5 e 4	1111.74428	

Results obtained with enhanced integrator!

Signal 5: DAD1 E, Sig=254, 16 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mA}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [midu]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	18.690	VB	0.4918	3175.78882	94.55867	50.5529
2	23.841	WV	0.6271	3106.32153	75.02407	49.4471
Totals :				6282.11035	169.58274	

Results obtained with enhanced inteqrator!

Signal 5: DAD1 E, Sig=254, 16 Ref=360, 100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mu}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [maU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	18.654	VB	0.2396	4.76252 e 4	2729.20068	97.7478
2	23.849	V	0.6324	1097.33411	22.60127	2.2522

Totals :

$$
4.87226 \mathrm{e} 4 \quad 2751.80196
$$

Results obtained with enhanced inteqrator!

Signal 4: DAD1 D, Sig=240,16 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Tvpe	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mA}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [maU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	25.174	VB	0.7935	4322.22266	81.13294	50.6807
2	32.673	BP	1.0141	4206.12500	60.27697	49.3193
Totals :				8528.34766	141.40992	

Results obtained with enhanced integrator!

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\text { min }]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{ma}^{+} \mathrm{U}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [muU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	25.291		0.5732	1.04703 e 5	2900.22632	96.7215
2	32.691		1.3906	3549.05542	32.38370	3.2785
Totals :				1.08252 e 5	2932.61002	

Results obtained with enhanced integrator!

4g

Signal 4: DAD1 D, Sig=240, 16 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\text { min] }]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mu}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	40.994	VB	1.1918	7220.98193	89.64089	50.6599
2	47.638	VB	1.1816	7032.86084	76.42580	49.3401
Total	:			1.42538 e 4	166.06670	

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=240, 16 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\text { min }]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mA}^{+} \mathrm{s}\right]} \end{gathered}$	Height [maU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	40.924	VB	0.9231	1.46090 e 5	2383.41162	93.3621
2	47.159	BBA	1.2820	1.03867 e 4	118.10255	6.6379
Totals :				1.56477 e 5	2501.51417	

Results obtained with enhanced integrator!

4h

Signal 4: DAD1 D, Sig=240,16 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \text { \# } \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	25.826	BP	0.6474	1489.26562	34.51617	50.8356
2	36.105	BB	0.7999	1440.30945	24.14571	49.1644
Totals :				2929.57507	58.66189	

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=240, 16 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\text { min }]} \end{aligned}$	Tvpe	width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{ma}^{+} \mathrm{U}^{*} s\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	25.857	VB	0.6562	1.34848 e 5	3389.43872	96.2683
2	35.889	VB	0.9158	5227.13623	88.14563	3.7317
Totals :				1.40075 e 5	3477.58435	

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=240, 16 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{ma}^{+} \mathrm{s}\right]} \end{gathered}$	Height [maU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	23.390		0.7556	4343.30322	86.23058	50.4732
2	30.065	VP	0.9955	4261.86523	63.14269	49.5268

Totals :
$8605.16846 \quad 149.37327$

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=240,16 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\text { min }]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{ma}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	23.731		0.4986	8.48079 e 4	2613.64648	94.4740
2	30.574	W	0.9520	4960.56787	76.15070	5.5260

Totals :
$8.97685 \mathrm{e} 4 \quad 2689.79718$
Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=240, 16 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{maU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [muU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	24.689	WV	0.5066	2.67934 e 4	732.81940	53.4324
2	31.627	VV	0.8860	2.33510 e 4	399.48334	46.5676
Totals :				5.01444 e 4	1132.30273	

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=240, 16 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime \lceil min \rceil	Type	Width \lceil min \rceil	$\begin{gathered} \text { Area } \\ \left\lceil\mathrm{ma}^{*} \mathrm{~s}\right\rceil \end{gathered}$	Height $\lceil\mathrm{msu} \mid$	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	24.738	WV	0.6182	1.27403 e 5	3361.64380	95.9749
2	31.364	W	0.8968	5343.19482	88.44862	4.0251
Totals :				1.32746 e 5	3450.09242	

Results obtained with enhanced integrator!

4k

Signal 4: DAD1 D, Sig=240, 16 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\text { min }]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{ma}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	27.100	MM	0.9671	3296.28906	56.80935	49.4226
2	38.517	VP	1.1055	3373.31226	37.49756	50.5774
Total	s :			6669.60132	94.30691	

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=240, 16 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\mathrm{min}]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{maU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \frac{8}{8} \end{gathered}$
1	27.728	MM	0.9871	1.15092 e 4	194.32687	8.0239
2	38.474	BB	0.8921	1.31928 e 5	1840.94043	91.9761
Total	s :			1.43437 e 5	2035.26730	

Results obtained with enhanced integrator!

41

Signal 4: DAD1 D, Sig=240, 16 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{ma}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [maU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	21.115	BB	0.5038	1.81073 e 4	533.78015	52.6108
2	29.885	BB	0.8671	1.63102 e 4	286.97375	47.3892
Totals :				3.44175e4	820.75391	

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig $=240,16$ Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\text { min }]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{ma}^{*} \mathrm{~S}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ \frac{8}{8} \end{gathered}$
1	21.129	WV	0.4792	9.00437 e 4	3025.81274	94.6387
2	29.770	VV	0.8949	5100.94482	86.63347	5.3613
Total	s :			9.51446 e 4	3112.44621	

Results obtained with enhanced integrator!

$4 m$

Signal 4: DAD1 D, Sig=240,16 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\text { min }]} \end{aligned}$	Type	$\begin{aligned} & \text { Width } \\ & \text { [min] } \end{aligned}$	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mA}^{*} \mathrm{~s}\right]} \end{gathered}$	Heicht [mAU]	$\begin{gathered} \text { Area } \\ \frac{8}{8} \end{gathered}$
1	30.050	BV	0.9771	3651.51489	55.10719	51.3386
2	32.511	VB	1.0235	3461.09302	50.50610	48.6614
Totals :				7112.60791	105.61329	

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=240,16 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mA}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [maU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	30.982	BV	0.7773	1.25172 e 5	2494.95068	94.7893
2	33.442	VP	1.0148	6880.89111	101.51363	5.2107

Totals :
$1.32053 \mathrm{e} 5 \quad 2596.46432$

Results obtained with enhanced integrator!

4n

Signal 4: DAD1 D, Sig=240, 16 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\text { min }]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mAU}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [maU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	40.570	MM	1.3343	2062.33643	25.75996	49.8741
2	46.161	MM	1.5440	2072.74536	22.37351	50.1259
Total	3 :			4135.08179	48.13347	

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=240,16 Ref=360,100

Results obtained with enhanced integrator!

40

Signal 5: DAD1 E, Sig=254, 16 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{ma}^{+} \mathrm{U}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [muU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	28.664	V	0.6615	2857.62573	59.16293	49.8885
2	30.854	VB	0.7244	2870.40332	54.68626	50.1115
Totals :				5728.02905	113.84919	

Results obtained with enhanced integrator!

Signal 5: DAD1 E, Sig=254, 16 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & \text { [min] } \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{ma}^{*} \mathrm{U}\right]} \end{gathered}$	Height [maU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	29.113	MM	0.5242	4.72320 e 4	1501.66919	95.7669
2	31.256	MM	0.6523	2087.77319	53.34237	4.2331
Totals :				4.93198 e 4	1555.01156	

Results obtained with enhanced integrator!

4p

Signal 4: DAD1 D, Sig=240, 16 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mA}^{+} \mathrm{J}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	21.270	VV	0.5715	4935.80664	132.23991	50.3572
2	23.713	VB	0.6379	4865.79004	116.83361	49.6428
Totals :				9801.59668	249.07352	

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=240, 16 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \text { \# } \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mA}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mLU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	20.783	WV	0.4184	6.58387 e 4	2507.28467	97.7939
2	23.087	WV	0.6880	1485.22034	32.82004	2.2061

Results obtained with enhanced integrator!

$4 q$

Signal 4: DAD1 D, Sig=240, 16 Ref=360, 100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\text { min }]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{ma}^{*} \mathrm{U} \mathrm{U}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [maU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	19.237	VB	0.5307	2294.94604	65.83404	50.9639
2	22.209	VB	0.6088	2208.13745	55.42449	49.0361
Totals :				4503.08350	121.25853	

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=240,16 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mA}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mLU]	$\begin{gathered} \text { Area } \\ \frac{8}{8} \end{gathered}$
1	19.150	WV	0.6211	1.21045 e 5	3353.40576	98.8826
2	22.022	V	0.6662	1367.77979	29.00519	1.1174
Total	s :			1.22413 e 5	3382.41095	

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=240, 16 Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{ma}^{*} \mathrm{U}\right]} \end{gathered}$	Height [maU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	19.245	VV	0.5384	4591.45605	130.53687	50.7190
2	22.679	VP	0.6191	4461.27441	110.47253	49.2810
Totals :				9052.73047	241.00940	

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=240,16 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mu}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mLU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	19.253	VV	0.5248	9.76993 e 4	3124.35278	98.8646
2	22.641	VV	0.6252	1121.99121	27.20411	1.1354
Totals :				9.88213 e 4	3151.55690	

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=240,16 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{ma}^{*} \mathrm{~J}\right]} \end{gathered}$	Height [maU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	27.486		0.7495	4844.80615	97.20631	51.0472
2	33.570	VP	0.9514	4646.02295	75.76279	48.9528
Total	s :			9490.82910	172.96911	

Signal 4: DAD1 D, Sig=240,16 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime $\lceil m i n\rceil$	Type	width $\lceil\min \rceil$	$\begin{gathered} \text { Area } \\ \left\lceil\mathrm{mA}^{*} \mathrm{~s}\right\rceil \end{gathered}$	Height $\lceil\mathrm{mLU} \mid$	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	27.725	V	0.6525	1.15605 e 5	2830.39673	95.2864
2	33.635	W	0.9784	5718.66406	86.59795	4.7136
Totals :				1.21323 e 5	2916.99467	

Results obtained with enhanced integrator!

Signal 3: DAD1 C, Sig $=230,8$ Ref $=360,100$

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{mA}^{*} \mathrm{~J}\right]} \end{gathered}$	Height [maU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	22.651	VV	0.7808	3.53936 e 4	638.42169	51.8832
2	25.788	VV	0.8907	3.28242 e 4	537.35980	48.1168
Totals :				6.82179 e 4	1175.78149	

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=240,16 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{aligned} & \text { RetTime } \\ & {[\mathrm{min}]} \end{aligned}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{ma}^{*} \mathrm{~s}\right]} \end{gathered}$	Height [mAU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	22.274	WV	0.6903	1.13648 e 5	2639.62012	91.6391
2	25.498	WV	1.0203	1.03689 e 4	150.40215	8.3609
Totals :				1.24017 e 5	2790.02226	

Results obtained with enhanced integrator!

4u

Signal 4: DAD1 D, Sig=240,16 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	$\begin{gathered} \text { RetTime } \\ {[\text { min }]} \end{gathered}$	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{ma}^{*} \mathrm{U}\right]} \end{gathered}$	Height [maU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	26.329	MM	1.1371	1350.81702	19.79937	49.9801
2	29.956	MM	1.3453	1351.89160	16.74867	50.0199
Total	3 :			2702.70862	36.54804	

Results obtained with enhanced integrator!

Signal 4: DAD1 D, Sig=240,16 Ref=360,100

$\begin{gathered} \text { Peak } \\ \# \end{gathered}$	RetTime [min]	Type	Width [min]	$\begin{gathered} \text { Area } \\ {\left[\mathrm{ma}^{*} \mathrm{~J}\right]} \end{gathered}$	Height [maU]	$\begin{gathered} \text { Area } \\ 8 \end{gathered}$
1	26.408		0.7098	9.92306 e 4	1923.82410	98.0575
2	30.158	VV	1.1641	1965.76746	20.92301	1.9425

Totals : $1.01196 \mathrm{e} 5 \quad 1944.74710$

Results obtained with enhanced integrator!

