## **Electronic supplementary information**

## The hollandite-type $\beta$ -FeOOH(Cl) as a new cathode material for chloride ion batteries

Guoqing Zhao, Gengping Wan, Yulin Tang, Xuefei Xu, Xuechun Zhou, Maofan Zhou, Zhen Deng, Shiwei Lin, Guizhen Wang\*

Key Laboratory of Advanced Materials of Tropical Island Resources (Hainan University), Ministry of Education, Haikou 570228, China \*Corresponding authors. Tel: +86-137 0040 8893. E-mail: wangguizhen0@hotmail.com (Guizhen Wang).

## **Experimental section**

 $\beta$ -FeOOH NRs was synthesized by a simple hydrothermal method. 0.2 mol FeCl<sub>3</sub> and 0.2 mol urea were added to 60 ml distilled water, stirring until clear. The mixed solution was transferred to a Teflon-lined autoclave and heated to 80 °C for 24 h and the obtained product was washed by ethanol and distilled water and dried at 60 °C in the oven overnight.

The  $\beta$ -FeOOH electrode was prepared by a slurry coating method. The active material  $\beta$ -FeOOH, carbon black and polyvinylidene fluoride (PVDF) binder were mixed with N-methyl-2-pyrrolidone (NMP) in the weight ratio 6:3:1. The slurry was coated on a stainless steel as current collector and vacuum dried at 80 °C for 24 h. 0.5 m 1-butyl-1-methylpyrrolidinium chloride (BpyCl) in propylene carbonate (PC) and 1-butyl-1-methylpiperidinium bis(trifluoromethylsulfonyl)imide (PP14TFSI) was used as electrolyte and Li metal as the anode electrode. The galvanostatic charge-discharge cycling and cyclic voltammograms (CV) curves were collected in the range 1.2–3.0 V.

Size distribution was tested by Zetasizer Nano S90 (4mW He-Ne,633nm) with the sample of β-FeOOH dispersed in water 0.001%–40% (w/w). X-ray diffraction (XRD) was used to analyze the structure and morphology of samples on a Rigaku SmartLab 3kW with Cu Ka radiation using 40 kV working voltage and 30 mA working current. Scanning electron microscopy (SEM) images were taken by using a field emission scanning electron microscopy (FESEM, Verios G4). Transmission electron microscopy (TEM) and high-resolution TEM (HRTEM) images were captured by a JEOL JEM-2100 microscope instrument at an acceleration voltage of 200 kV. Mass contents were measured by thermal gravimetric analysis system (Q600, TA, America). The IR spectra were measured with a Bruker TENSOR27 FT-IR spectrometer with scanning 32 times and the spectral resolution was 4 cm<sup>-1</sup> for each spectrum. X-ray Photoelectron Spectrometer (XPS) were conducted by using a PHI5000 Versaprobe-II spectrometer with a monochromatic Al Ka (1486.6 eV) source and the spectra were calibrated using carbon spectrum as a reference. The specific surface area, pore size distribution and pore volume were measured using the nitrogen adsorption-desorption technique (ASAP2460 Physisorption instrument).



**Figure S1.** HRTEM and FFT images of  $\beta$ -FeOOH.



Figure S2. The TEM and line-scan distribution in the elements of Fe, O and Cl.

| Name | Mult | X | У | Z | В | Occ. |
|------|------|---|---|---|---|------|
|------|------|---|---|---|---|------|

| Fe1                                                            | 8h | 0. 35579 | 0.15528 | 0.00000 | 0.00000 | 1   |  |  |  |
|----------------------------------------------------------------|----|----------|---------|---------|---------|-----|--|--|--|
| 01                                                             | 8h | 0.16000  | 0.20116 | 0.00000 | 0.00000 | 1   |  |  |  |
| 02                                                             | 8h | 0.54648  | 0.16608 | 0.00000 | 0.00000 | 1   |  |  |  |
| 03                                                             | 4e | 0.00000  | 0.00000 | 0.45412 | 0.00000 | 0.5 |  |  |  |
| H1                                                             | 8h | 0.21842  | 0.17307 | 0.00000 | 0.00000 | 1   |  |  |  |
| $Rp = 1.63$ , $Rwp = 2.12\%$ , $Rexp = 1.34$ , $\chi^2 = 2.49$ |    |          |         |         |         |     |  |  |  |

**Table S1.** Rietveld refinement results of XRD data for bare  $\beta$ -FeOOH.



**Figure S3.** The TG curve of  $\beta$ -FeOOH.



Figure S4. SEM image and the corresponding EDS result of  $\beta$ -FeOOH NRs after TG testing.



Figure S5. N2 adsorption-desorption isotherms and pore distribution of  $\beta$ -FeOOH.



**Figure S6.** The survey XPS of  $\beta$ -FeOOH NRs.



Figure S7. SEM image and the corresponding EDS result of  $\beta$ -FeOOH NRs after 100 cycles.



Figure S8. Ex situ SEM images (1  $\mu$ m) and the corresponding EDS results of  $\beta$ -FeOOH cathode during discharging and charging process.