[Al(H₂O)₆](IO₃)₂(NO₃): A Material with Sizable Birefringence Induced by Synergism of Double Superior Functional Motifs

Zhiyong Bai,^{[a][c]} Chun-Li Hu, ^[b] Dongmei Wang, ^[a] Lehui Liu, ^[a] Lizhen Zhang, ^{[a][d]} Feifei Yuan, ^[a] Yisheng Huang, ^[a] and Zhoubin Lin^{*[a][d]}

[a] Key Laboratory of Optoelectronic Materials Chemistry and Physics, Fujian Institute of Research on the Structure of Matter, Chinese Academy of

Sciences, Fuzhou, Fujian, 350002, P. R. China. E-mail: lzb@fjirsm.ac.cn

[b] State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou,

Fujian, 350002, P. R. China.

[c] University of Chinese Academy of Sciences, Beijing 100049, P. R. China.

[d] Fujian Science & Technology Innovation Laboratory for Optoelectronic Information of China, Fuzhou, Fujian, 350108, China

Experiment

- Synthesis. The chemical reagent Al(NO₃)•9H₂O (3mmol, 1.1250g) and I₂O₅(3mmol, 1.0014g) were dissolved in the 5 mL distilled water and then stirred to ensure solution dissolves clearly. The solution was evaporated at room temperature and after about four days large transparent single crystal with dimensions of 12×8×5 mm³ was obtained (Figure S4).
- 2. **Powder X-ray Diffraction.** Powder X-ray diffraction analyses of AINO were carried out at room temperature on a Miniflex 600 diffractometer equipped with Cu K α radiation (λ = 1.5406 Å). Data were collected in the angular range of 2 θ = 10-70° with a scan step width of 0.008° and a scan time of 0.5 s. The experimental powder X-ray diffraction patterns are in agreement with those simulation results on the basis of the single-crystal crystallographic data.
- 3. Single Crystal X-ray Diffraction. The single crystal X-ray diffraction was performed on a Rigaku ROD, Synergy Custom system, HyPix diffractometer equipped with mirror-monochromatic Ga K α radiation (λ =1.3405Å) at 298 K. A suitable sample of AINO was selected and used for data collection. The data were corrected for Lorentz factor, polarization and absorption. By means of Olex2, the structure was solved with the ShelXT structure solution program using Intrinsic Phasing and refined with the ShelXL refinement package using Least Squares minimization. All of the atoms were refined with anisotropic displacement parameters and secondary extinction correction. The structure was verified by Platon and no higher symmetry was found. Crystallographic data for structural refinements, atoms coordination, thermal parameters, and selected bond lengths and bond angles are listed in Tables S1 to S8.
- 4. Birefringence Measurement. The birefringence of AINO was measured on a polarizing microscope (ZEISS Axio Scope. A1) equipped with Berek compensator. The wavelength of the light source is 546 nm. Attributable to the clear boundary lines of the first-, second- and third-order interference color, the relative error is small enough. During the measurement, the retardation was recorded and then the crystal's thickness was measured. According to the given retardation and thickness of crystal, the birefringence was calculated with following equation,

where, Δn represents the birefringence, R the retardation, and d the thickness of the crystal selected as measurement sample.

- 5. **Transmittance Spectrum.** The UV-Vis-NIR transmittance spectrum of AINO were recorded at room temperature in a Perkin-Elmer Lambda 900 UV/Vis/NIR spectrophotometer in the 200-1000 nm wavelength range.
- 6. **Thermal Analysis.** Thermogravimetric (TG) analysis of AINO was performed on a NETZSCH STA 449F3 instrument in a temperature range of 30-1000 $^{\circ}$ C at a 10 $^{\circ}$ C /min heating rate.
- 7. **Computational Details.** Single-crystal structural data of compound AINO were used for the theoretical calculations. The electronic structures and optical properties were performed using a plane-wave basis set and pseudo-potentials within density functional theory (DFT) implemented

in the total-energy code CASTEP. For the exchange and correlation function, Perdew–Burke– Ernzerhof (PBE) in the generalized gradient approximation (GGA) was chosen. The interactions between the ionic cores and the electrons were described by the norm-conserving pseudopotential. The following valence-electron configurations were considered in the computation: Al-3s²3p¹, I-5s²5p³, N-2s²2p³, O-2s²2p⁴ and H-1s¹. The number of plane waves included in the basis sets was determined by a cutoff energy of 900 eV. The numerical integration of the Brillouin zone was per-formed using a Monkhorst-Pack k-point sampling of 4 × 3× 5. It's worth noting that 120 empty bands were included during the optical properties calculations to ensure the accuracy of refractive indices. The other parameters and convergent criteria were the default values of CASTEP code.

Figure S1. Powder X-ray diffraction patterns for AINO

Figure S2. Thermogravimetric analysis (TGA) for AINO

As shown in figure S2, AINO started a decomposition and mass loss at about 100 $^{\circ}$ C, and completed the decomposition at about and 500 $^{\circ}$ C with releasing of 6H₂O, I₂O₅, and 0.5N₂O₅. The experimental mass loss is 88.2%, in accordance with the theoretical value 90.67%.

Figure S3. The photographs of extinction and thickness of crystal.

Figure S4. The as-grown single crystal of AINO with dimensions of 12×8×5 mm³.

Figure S5. IR spectrums.

Table S1.	Crystal data	and structure	refinement for AINO.
-----------	--------------	---------------	----------------------

Empirical formula	AIH ₁₂ I ₂ NO ₁₅
Formula weight	546.91
Temperature/K	293(2)
Crystal system	trigonal
Space group	P-3m1
a/Å	6.7200(7)
b/Å	6.7200(7)
c/Å	8.0975(10)
α/°	90
β/°	90
γ/°	120
Volume/Å3	316.68(8)
Z	1
pcalcg/cm3	2.868
µ/mm-1	5.117
F(000)	258.0
Radiation	ΜοΚα (λ = 0.71073)
2O range for data collection/°	7.002 to 54.904
Index ranges	$-8 \le h \le 8, -8 \le k \le 8, -9 \le l \le 10$
Reflections collected	2383
Independent reflections	307 [Rint = 0.0337, Rsigma = 0.0204]
Data/restraints/parameters	307/0/27
Goodness-of-fit on F2	1.305
Final R indexes [I>=2o (I)]	R1 = 0.0160, wR2 = 0.0437
Final R indexes [all data]	R1 = 0.0162, wR2 = 0.0438
Largest diff. peak/hole / e Å-3	0.44/-0.69

 Table S2. Fractional Atomic Coordinates (×104) and Equivalent Isotropic Displacement Parameters (Å2×103) for AINO. Ueq is defined as 1/3 of of the trace of the orthogonalised UIJ tensor.

Atom x		у	Z	U(eq)
1001 33	333.33	6666.67	1101.5(4)	16.5(2)
O003 46	692(2)	5308(2)	2151(3)	28.4(6)
Al02 0		0	5000	15.0(5)
O004 27	704(4)	1352(2)	3726(3)	23.5(6)
N009 0		0	0	23.5(17)
O00A 18	367(8)	0	0	33.3(13)
Во	ond valence sum (BVS)	l: 5.2	Al: 3.2	N: 4.84

 $\textbf{Table S3.} An isotropic Displacement Parameters (\texttt{A2} \times 103) for AINO. The Anisotropic displacement factor exponent takes the form: - 1000 \text{ m}^{-1} \text{ m}^{-1$

Atom	U11	U22	U33	U23	U13	U12
1001	15.6(2)	15.6(2)	18.2(3)	0	0	7.79(11)
O003	26.7(10)	26.7(10)	37.5(16)	3.9(6)	-3.9(6)	17.6(12)
AI02	15.4(7)	15.4(7)	14.1(12)	0	0	7.7(4)
O004	27.3(14)	23.1(9)	21.3(13)	4.3(5)	8.5(11)	13.7(7)
N009	29(3)	29(3)	12(4)	0	0	14.7(13)
000A	29(2)	40(3)	35(3)	3(3)	1.4(13)	20.0(15)

2π2[h2a*2U11+2hka*b*U12+…].

Table S4.	Bond	Lengths	for	AINO)
-----------	------	---------	-----	------	---

Atom Atom	Length/Å	Atom Atom	Length/Å
1001 O0031	1.796(3)	N009 O00A8	1.255(5)
1001 O0032	1.796(3)	N009 O00A7	1.255(5)
1001 O003	1.796(3)	N009 O00A9	1.255(5)
AI02 O0043	1.882(2)	N009 O00A	1.255(5)
AI02 O0044	1.882(2)	N009 O00A10	1.255(5)
AI02 O0045	1.882(2)	N009 O00A4	1.255(5)
AI02 O0046	1.882(2)	O00A O00A10	1.255(5)
AI02 O0047	1.882(2)	O00A O00A8	1.255(5)
Al02 0004	1.882(2)		

11-Y,1+X-Y,+Z; 2+Y-X,1-X,+Z; 3-X,-Y,1-Z; 4+Y-X,-X,+Z; 5+Y,-X+Y,1-Z; 6-Y+X,

+X,1-Z; 7-Y,+X-Y,+Z; 8-Y+X,+X,-Z; 9-X,-Y,-Z; 10+Y,-X+Y,-Z

Table S5. Bond Angles for AINO.

Atom	Atom	Atom	Angle/°	Atom	Atom	Atom	Angle/°
O0031	1001	O0032	99.43(12)	O00A8	N009	O00A7	180.0(8)
O0031	1001	O003	99.43(12)	O00A7	N009	O00A6	120.0
O0032	1001	O003	99.43(12)	O00A8	N009	O00A9	120.0
O0043	AI02	O004	87.19(11)	O00A6	N009	O00A9	180.0
O0044	AI02	O0045	92.81(11)	O00A10	N009	O00A6	60.0
O0044	AI02	O0046	180.00(12)	O00A6	N009	000A	120.0
O0044	AI02	O004	87.19(11)	O00A8	N009	O00A6	60.0
O0046	AI02	O0045	87.19(11)	O00A8	N009	O00A10	120.0
O0043	AI02	O0044	92.81(11)	O00A10	N009	000A	180.0
O0047	AI02	O0045	87.19(11)	O00A7	N009	000A	120.0
O0047	AI02	O0044	87.19(11)	O00A9	N009	000A	60.0
O0046	AI02	O004	92.81(11)	O00A7	N009	O00A10	60.0
O0043	AI02	O0046	87.19(11)	O00A10	N009	O00A9	120.0
O0047	AI02	O004	92.81(11)	O00A7	N009	O00A9	60.0
O0047	AI02	O0046	92.81(11)	O00A8	N009	000A	60.0
O0043	AI02	O0047	180.00(13)	O00A8	000A	N009	60.0
O0043	AI02	O0045	92.81(11)	O00A9	000A	N009	60.0
O0045	AI02	O004	180.0	O00A9	000A	O00A8	120.0

11-Y,1+X-Y,+Z; 2+Y-X,1-X,+Z; 3-Y+X,+X,1-Z; 4+Y,-X+Y,1-Z; 5-X,-Y,1-Z; 6-Y,+X-Y,+Z; 7+Y-X,-X,+Z; 8-Y+X,+X,-Z; 9+Y, -X+Y,-Z; 10-X,-Y,-Z

Table S6. Hydrogen Atom Coordinates (Å×104) and Isotropic Displacement Parameters (Å2×103) for AIN	10
--	----

Atom x	у	z	U(eq)
H00A 2994.27	2673.18	3370	35
H00B 2488.8	561.08	2837.94	35

Table S7. Atomic Occupancy for AINO.

Atom Occupancy	Atom Occupancy	Atom Occupancy
H00A 0.5	H00B 0.5	O00A 0.5