Electronic Supplementary Information for Phosphinative Cyclopropanation of Allyl Phosphates with Lithium Phosphides

Ryo Shintani*, Ayase Ohzono and Kentaro Shirota

Division of Chemistry, Department of Materials Engineering Science, Graduate School of Engineering Science, Osaka University, Toyonaka, Osaka 560-8531, Japan
shintani@chem.es.osaka-u.ac.jp

I. General

All reactions were carried out with standard Schlenk techniques under nitrogen unless otherwise noted. NMR spectra were recorded on JEOL JNM-ECS400 or Agilent Unity-Inova500 spectrometer. High resolution mass spectra were recorded on JEOL JMS700 spectrometer. X-ray crystallographic analysis was performed by RIGAKU XTaLAB P200. Preparative GPC was performed with JAI LaboACE LC-5060 equipped with JAIGEL-2HR columns using CHCl_{3} as an eluent.
N, N-Diisopropylethylamine (Wako Chemicals) was distilled over KOH under vacuum. Pyridine (Nacalai Tesque) was dried over MS4A prior to use. Toluene (Wako Chemicals; dehydrated), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (Kanto Chemical; dehydrated), $\mathrm{Et}_{2} \mathrm{O}$ (Wako Chemicals; dehydrated), tert-butyl methyl ether (Wako Chemicals; dehydrated), cyclopentyl methyl ether (Wako Chemicals; dehydrated), THF (Kanto Chemical; dehydrated), tert-butyl bromoacetate (Wako Chemicals), glycoaldehyde (Aldrich), 4dimethylaminopyridine (Wako Chemicals), diethyl chlorophosphate (Aldrich), triphenylphosphine (Wako Chemicals), dicyclohexylphosphine (Kanto Chemical), dicyclopentylphosphine (Strem Chemicals; $10 \mathrm{wt} \%$ solution in hexane), diisopropylphosphine (Acros Organics; $10 \mathrm{wt} \%$ solution in hexane), diisobutylphosphine (Strem Chemicals; $10 \mathrm{wt} \%$ solution in hexane), di-tert-butylphosphine (Acros Organics; $10 \mathrm{wt} \%$ solution in hexane), diphenylphosphine (TCI), $n \mathrm{BuLi}$ (Kanto Chemical; $1.57-1.59 \mathrm{M}$ solution in hexane), hydrogen peroxide (Kishida Chemical; 30wt\% solution in $\mathrm{H}_{2} \mathrm{O}$), N, N '-dimethylpropyleneurea (TCI), hexamethylphosphoric triamide (TCI), and lithium (Kishida Chemical; sticks in liquid paraffin) were used as received.
$\mathbf{1 a},{ }^{1} \mathbf{1 b},{ }^{2} \mathbf{1 c},{ }^{3} \mathbf{1 d},{ }^{2} \mathbf{1 e},{ }^{4} \mathbf{1 f},{ }^{2} \mathbf{1 g},{ }^{3} \mathbf{1 h},{ }^{2} \mathbf{1 i},{ }^{2} \mathbf{1 j},{ }^{5} \mathbf{1 1},{ }^{2} \mathbf{1 m},{ }^{6} \mathbf{5},{ }^{7} \mathbf{6},{ }^{8}(E)$-4-phenyl-3-buten-2-ol, ${ }^{9}$ and 1,2diphenyltetramethyldisilane ${ }^{2}$ were synthesized following the literature procedures.

II. Synthesis of Substrates

Diethyl (E)-3-(tert-butoxycarbonyl)-2-propen-1-yl phosphate (1k)

tert-Butyl bromoacetate ($644 \mu \mathrm{~L}, 4.39 \mathrm{mmol}$) was added dropwise to a solution of triphenylphosphine $(1.05 \mathrm{~g}, 4.00 \mathrm{mmol})$ in toluene $(2.3 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$, and the mixture was stirred for 8 h while gradually raising the temperature to room temperature. The precipitates that formed were collected by filtration with pentane and dried under vacuum. The solid thus obtained was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(26 \mathrm{~mL})$ and $1.0 \mathrm{M} \mathrm{NaOHaq}(8.0 \mathrm{~mL}, 8.0 \mathrm{mmol})$ was added to it. The resulting mixture was stirred for 1 h at room temperature, and this was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 3 times. The combined organic layer was washed with saturated NaClaq , dried over $\mathrm{Na}_{2} \mathrm{SO}_{4}$, filtered, and concentrated under vacuum to afford tert-butyl (triphenylphosphoranylidene)acetate (CAS 35000-38-5) as a white solid (1.21g, 3.21 $\mathrm{mmol} ; 80 \%$ yield). Without further purification, this was added with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.0 \mathrm{~mL})$ to a solution of glycolaldehyde ($109 \mathrm{mg}, 0.908 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.5 \mathrm{~mL})$, and the mixture was stirred for 4 h at $40^{\circ} \mathrm{C}$. The solvent was removed under vacuum and the residue was chromatographed on silica gel with hexane/EtOAc $=3 / 1$ to afford tert-butyl (E)-4-hydroxy-2-butenoate (CAS 528846-51-7) as a colorless oil ($229 \mathrm{mg}, 1.45 \mathrm{mmol} ; 80 \%$ yield).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 6.93\left(\mathrm{dt},{ }^{3} J_{\mathrm{HH}}=15.6\right.$ and $\left.4.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.01\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=15.8 \mathrm{~Hz}\right.$ and ${ }^{4} J_{\mathrm{HH}}=1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.33\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=4.1 \mathrm{~Hz}\right.$ and $\left.{ }^{4} J_{\mathrm{HH}}=1.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.54(\mathrm{~s}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H})$.
N, N-Diisopropylethylamine ($489 \mu \mathrm{~L}, 2.90 \mathrm{mmol}$) and 4-dimethylaminopyridine ($36.0 \mathrm{mg}, 0.295$ mmol) were added to a solution of tert-butyl (E)-4-hydroxy-2-butenoate ($229 \mathrm{mg}, 1.45 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8.0 \mathrm{~mL})$. Diethyl chlorophosphate ($327 \mu \mathrm{~L}, 2.28 \mathrm{mmol}$) was added dropwise to it and the mixture was stirred for 18 h at room temperature. The reaction was quenched with saturated $\mathrm{NaHCO}_{3} \mathrm{aq}$ and this was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$, and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 2 times. The combined organic layer was washed with saturated $\mathrm{NH}_{4} \mathrm{Claq}$, dried over MgSO_{4}, filtered, and concentrated under vacuum. The residue was chromatographed on silica gel with hexane/EtOAc $=1 / 2$ to afford compound $\mathbf{1 k}$ (CAS 528846-27-7) as a yellow oil ($383 \mathrm{mg}, 1.30 \mathrm{mmol} ; 90 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 6.82\left(\mathrm{dtd},{ }^{3} J_{\mathrm{HH}}=15.6\right.$ and 4.4 Hz and $\left.{ }^{4} J_{\mathrm{HP}}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.03\left(\mathrm{dt},{ }^{3} J_{\mathrm{HH}}=15.6\right.$ Hz and $\left.{ }^{4} J_{\mathrm{HH}}=1.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.67\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HP}}=7.3 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=4.4 \mathrm{~Hz}\right.$, and $\left.{ }^{4} J_{\mathrm{HH}}=1.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.14(\mathrm{dq}$, ${ }^{3} J_{\mathrm{HP}}=8.0 \mathrm{~Hz}$ and $\left.{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 4 \mathrm{H}\right), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.35\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz},{ }^{4} J_{\mathrm{HP}}=1.0 \mathrm{~Hz}, 6 \mathrm{H}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 165.1,140.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=7.7 \mathrm{~Hz}\right), 124.2,80.8,65.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=4.8 \mathrm{~Hz}\right), 64.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=\right.$ $5.8 \mathrm{~Hz}), 28.2,16.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=5.8 \mathrm{~Hz}\right)$.

Diethyl (E)-4-phenyl-3-buten-2-yl phosphate (1m)

Pyridine ($325 \mu \mathrm{~L}, 4.02 \mathrm{mmol}$) and 4-dimethylaminopyridine ($49.3 \mathrm{mg}, 0.404 \mathrm{mmol}$) were added to a solution of (E)-4-phenyl-3-buten-2-ol ($298 \mathrm{mg}, 2.01 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$. Diethyl chlorophosphate ($434 \mu \mathrm{~L}, 3.02 \mathrm{mmol}$) was added dropwise to it at $0^{\circ} \mathrm{C}$ and the mixture was stirred for 16 h while gradually raising the temperature to room temperature. The precipitates that formed were filtered off through Celite with $\mathrm{Et}_{2} \mathrm{O}$, and the solvent was removed under vacuum. The residue was purified by GPC with CHCl_{3} to afford compound $\mathbf{1 m}$ as a colorless oil ($332 \mathrm{mg}, 1.17 \mathrm{mmol} ; 58 \%$ yield).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.41-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.34-7.28(\mathrm{~m}, 2 \mathrm{H}), 7.27-7.22(\mathrm{~m}, 1 \mathrm{H}), 6.62\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=16.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 6.22\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=16.0\right.$ and $\left.7.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.15-5.04(\mathrm{~m}, 1 \mathrm{H}), 4.17-4.03(\mathrm{~m}, 4 \mathrm{H}), 1.50\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=\right.$ $6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.32\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}\right.$ and $\left.{ }^{4} J_{\mathrm{HP}}=0.9 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.28\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}\right.$ and ${ }^{4} J_{\mathrm{HP}}=0.9 \mathrm{~Hz}$, $3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 136.3,131.7,129.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=5.8 \mathrm{~Hz}\right), 128.7,128.2,126.8,75.9(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{CP}}=4.8 \mathrm{~Hz}\right), 63.74\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=5.8 \mathrm{~Hz}\right), 63.69\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=4.8 \mathrm{~Hz}\right), 22.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=4.8 \mathrm{~Hz}\right), 16.2\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}\right.$ $=6.7 \mathrm{~Hz})$. HRMS (FAB) calcd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{O}_{4} \mathrm{P}\left(\mathrm{M}^{+}\right)$284.1172, found 284.1176 .

III. Cyclopropanation Reactions

Procedure for Table 1, Entry 4.

$n \mathrm{BuLi}(283 \mu \mathrm{~L}, 0.450 \mathrm{mmol} ; 1.59 \mathrm{M}$ solution in hexane) was added to a solution of dicyclohexylphosphine ($98.7 \mu \mathrm{~L}, 0.450 \mathrm{mmol}$) in cyclopentyl methyl ether $(1.5 \mathrm{~mL})$ at $0{ }^{\circ} \mathrm{C}$. Compound $\mathbf{1 a}(81.7 \mathrm{mg}, 0.302 \mathrm{mmol})$ was added to it and the mixture was stirred for 3 h at $20^{\circ} \mathrm{C}$. $\mathrm{H}_{2} \mathrm{O}_{2}\left(221 \mu \mathrm{~L}, 2.16 \mathrm{mmol} ; 30 \mathrm{wt} \%\right.$ solution in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ was then added to it and the resulting mixture was stirred for 2 h at room temperature. This was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$ for 3 times, and the combined organic layer was washed with saturated NaClaq , dried over MgSO_{4}, filtered, and concentrated under vacuum. The residue was purified by GPC with CHCl_{3} to afford a mixture of compounds 3aa/4aa as a white solid ($70.9 \mathrm{mg}, 0.215 \mathrm{mmol}$; 71% yield, ($\mathbf{3 a a} / \mathbf{4 a a}=3 / 97$).

4aa: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.35\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.31\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.23\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=\right.$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.51\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=15.8 \mathrm{~Hz}\right.$ and $\left.{ }^{4} J_{\mathrm{HP}}=3.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.25\left(\mathrm{dtd},{ }^{3} J_{\mathrm{HH}}=15.8\right.$ and 7.6 Hz and $\left.{ }^{3} J_{\mathrm{HP}}=5.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.74\left(\mathrm{dd},{ }^{2} J_{\mathrm{HP}}=13.8 \mathrm{~Hz}\right.$ and $\left.{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.07-1.63(\mathrm{~m}, 12 \mathrm{H}), 1.55-1.38$
$(\mathrm{m}, 4 \mathrm{H}), 1.34-1.16(\mathrm{~m}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 137.0\left(\mathrm{~d},{ }^{4} J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 134.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=11.5\right.$ $\mathrm{Hz}), 128.6,127.5,126.2,120.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=7.7 \mathrm{~Hz}\right), 36.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=63.3 \mathrm{~Hz}\right), 30.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=57.5 \mathrm{~Hz}\right)$, $26.7\left(\mathrm{~d}, J_{\mathrm{CP}}=12.5 \mathrm{~Hz}\right), 26.6\left(\mathrm{~d}, J_{\mathrm{CP}}=11.5 \mathrm{~Hz}\right), 26.0,25.9\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 25.5\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right)$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 49.5$ (s). HRMS (FAB) calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{OP}\left(\mathrm{M}+\mathrm{H}^{+}\right) 331.2185$, found 331.2194.

General Procedure for Table 2, Equations 1-3, and Scheme 2.

Hexamethylphosphoric triamide (HMPA; $83.5 \mu \mathrm{~L}, 0.480 \mathrm{mmol}$) and THF (0.5 mL) were added to a solution of dicyclohexylphosphine $(98.7 \mu \mathrm{~L}, 0.450 \mathrm{mmol})$ in THF $(1.0 \mathrm{~mL})$, and the mixture was cooled to $0{ }^{\circ} \mathrm{C} . n \mathrm{BuLi}(287 \mu \mathrm{~L}, 0.450 \mathrm{mmol} ; 1.57 \mathrm{M}$ solution in hexane) was added to it, and the mixture was cooled to $-78^{\circ} \mathrm{C}$. Compound $\mathbf{1}, \mathbf{5}$, or $\mathbf{6}(0.300 \mathrm{mmol})$ was added to it and the resulting mixture was stirred for 3 h at $-78^{\circ} \mathrm{C} . \mathrm{H}_{2} \mathrm{O}_{2}\left(110 \mu \mathrm{~L}, 1.08 \mathrm{mmol} ; 30 \mathrm{wt} \%\right.$ solution in $\left.\mathrm{H}_{2} \mathrm{O}\right)$ was then added to it and the resulting mixture was stirred for 1 h at room temperature. This was extracted with $\mathrm{Et}_{2} \mathrm{O}$ and the organic layer was washed with $\mathrm{H}_{2} \mathrm{O}$ for 3 times. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}$, and the combined organic layer was washed with saturated NaClaq, dried over MgSO_{4}, filtered, and concentrated under vacuum. The residue was purified by GPC with CHCl_{3} to afford compounds 3/4.

Table 2, Entry 1 (Compound 3aa). Colorless oil. 77\% yield (3aa/(4aa+4aa') = 92/8, 4aa/4aa' = 88/12, containing ca. 4\% inseparable dicyclohexyl(3-phenylpropyl)phosphine oxide).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): ~ \delta 7.32-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.16(\mathrm{~m}, 1 \mathrm{H}), 7.14-7.07(\mathrm{~m}, 2 \mathrm{H}), 2.46-2.34(\mathrm{~m}, 1 \mathrm{H})$, 2.08-1.58 (m, 12H), 1.57-1.10 (m, 12H), 0.86-0.73 (m, 1H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 141.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}\right.$ $=1.9 \mathrm{~Hz}), 128.7,126.3,126.0,36.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=67.1 \mathrm{~Hz}\right), 36.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=68.1 \mathrm{~Hz}\right), 26.8\left(\mathrm{~d}, J_{\mathrm{CP}}=13.4\right.$ $\mathrm{Hz})$, 26.7, 26.64, $26.62\left(\mathrm{~d}, J_{\mathrm{CP}}=11.5 \mathrm{~Hz}\right), 26.21\left(\mathrm{~d}, J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 26.16,26.04,26.03\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9\right.$ $\mathrm{Hz}), 25.5\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 25.3\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 18.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 13.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=84.4 \mathrm{~Hz}\right) 11.4$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 48.0(\mathrm{~s})$. HRMS (FAB) calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{OP}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 331.2185 , found 331.2191 .

Table 2, Entry 2 (Compound 3ba). White solid. 80\% yield (3ba/4ba = 97/3).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.61-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.52\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.43\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 2 \mathrm{H}\right)$,
$7.36-7.30(\mathrm{~m}, 1 \mathrm{H}), 7.18\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.51-2.38(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.63(\mathrm{~m}, 12 \mathrm{H}), 1.61-1.12(\mathrm{~m}$, $12 \mathrm{H}), 0.90-0.77(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 140.8,140.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 139.3,128.8$, $127.4,127.3,127.0,126.4,36.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=67.1 \mathrm{~Hz}\right), 36.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=68.1 \mathrm{~Hz}\right), 26.745\left(\mathrm{~d}, J_{\mathrm{CP}}=12.5\right.$ $\mathrm{Hz}), 26.740,26.62,26.60\left(\mathrm{~d}, J_{\mathrm{CP}}=12.5 \mathrm{~Hz}\right), 26.2\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 26.1,26.0,25.5\left(\mathrm{~d}, J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right)$, $25.3\left(\mathrm{~d}, J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right), 18.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 13.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=83.4 \mathrm{~Hz}\right), 11.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (CDCl_{3}): $\delta 48.1$ (s). HRMS (FAB) calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{OP}\left(\mathrm{M}+\mathrm{H}^{+}\right) 407.2498$, found 407.2505.

Table 2, Entry 3 (Compound 3ca). White solid. 76\% yield (3ca/4ca = 99/1).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.25\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.02\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.43-2.28(\mathrm{~m}, 1 \mathrm{H})$, 2.07-1.59 (m, 12H), 1.57-1.05 (m, 12H), 0.81-0.67 (m, 1H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 139.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}\right.$ $=2.9 \mathrm{~Hz}), 132.0,128.8,127.2,36.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=67.1 \mathrm{~Hz}\right), 36.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=68.0 \mathrm{~Hz}\right), 26.71\left(\mathrm{~d}, J_{\mathrm{CP}}=12.5\right.$ $\mathrm{Hz}), 26.70,26.58,26.56\left(\mathrm{~d}, J_{\mathrm{CP}}=12.5 \mathrm{~Hz}\right), 26.2\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 26.10,26.06\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 26.0$, $25.5\left(\mathrm{~d}, J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right), 25.3\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 18.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 14.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=83.4 \mathrm{~Hz}\right), 11.6(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{CP}}=4.8 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 47.9(\mathrm{~s})$. HRMS (FAB) calcd for $\mathrm{C}_{21} \mathrm{H}_{31} \mathrm{ClOP}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 365.1796, found 365.1795 .

Table 2, Entry 4 (Compound 3da). Colorless oil. 86\% yield (3da/(4da+4da') = 90/10, 4da/4da' $=$ 89/11, containing ca. 3% inseparable dicyclohexyl(3-(3-methoxyphenyl)propyl)phosphine oxide).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.20\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=8.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.74\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}\right.$ and $\left.{ }^{4} J_{\mathrm{HH}}=2.3 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $6.70\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.65\left(\mathrm{t},{ }^{4} J_{\mathrm{HH}}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.80(\mathrm{~s}, 3 \mathrm{H}), 2.43-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.08-1.59(\mathrm{~m}$, $12 \mathrm{H}), 1.56-1.10(\mathrm{~m}, 12 \mathrm{H}), 0.85-0.74(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 159.9,142.6\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=1.9\right.$ $\mathrm{Hz}), 129.6,118.2,112.0,111.4,55.2,36.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=67.1 \mathrm{~Hz}\right), 36.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=68.1 \mathrm{~Hz}\right), 26.646\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=12.5 \mathrm{~Hz}$), 26.645, 26.53, $26.52\left(\mathrm{~d}, J_{\mathrm{CP}}=12.5 \mathrm{~Hz}\right), 26.08\left(\mathrm{~d}, J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 26.05,25.94,25.92(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 25.4\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 25.2\left(\mathrm{~d}, J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right), 18.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 13.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=\right.$ $84.4 \mathrm{~Hz}), 11.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=4.8 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 48.0(\mathrm{~s})$. HRMS (FAB) calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{O}_{2} \mathrm{P}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) 361.2291$, found 361.2292 .

Table 2, Entry 5 (Compound 3ea). White solid. 67\% yield (3ea/(4ea+4ea') =90/10, 4ea/4ea' = 65/35, containing ca. 2\% inseparable dicyclohexyl(3-(2-methylphenyl)propyl)phosphine oxide).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.20-7.09(\mathrm{~m}, 3 \mathrm{H}), 6.91-6.85(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.40(\mathrm{~m}, 1 \mathrm{H}), 2.43(\mathrm{~s}, 3 \mathrm{H}), 2.08-$ $1.15(\mathrm{~m}, 23 \mathrm{H}), 1.08-0.96(\mathrm{~m}, 1 \mathrm{H}), 0.94-0.84(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 138.8\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=2.9\right.$ Hz), 138.1, 130.2, 126.3, 126.0, 124.4, $36.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=68.1 \mathrm{~Hz}\right), 36.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=67.1 \mathrm{~Hz}\right), 26.8\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=3.8 \mathrm{~Hz}), 26.7\left(\mathrm{~d}, J_{\mathrm{CP}}=12.5 \mathrm{~Hz}\right), 26.64\left(\mathrm{~d}, J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 26.61\left(\mathrm{~d}, J_{\mathrm{CP}}=11.5 \mathrm{~Hz}\right), 26.2\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9\right.$ $\mathrm{Hz}), 26.13,26.08,26.07\left(\mathrm{~d}, J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 25.5\left(\mathrm{~d}, J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right), 25.3\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 19.8,16.7(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 11.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=4.8 \mathrm{~Hz}\right), 10.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=84.4 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 48.3(\mathrm{~s})$. HRMS (FAB) calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{OP}\left(\mathrm{M}+\mathrm{H}^{+}\right) 345.2342$, found 345.2349 .

Table 2, Entry 6 (Compound 3fa). White solid. 97% yield ($\left.\mathbf{3 f a} /\left(\mathbf{4 f a} \mathbf{a} \mathbf{4 f a}{ }^{\prime}\right)=97 / 3, \mathbf{4 f a} / \mathbf{4 f a}{ }^{\prime}=50 / 50\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 8.38\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.88-7.83(\mathrm{~m}, 1 \mathrm{H}), 7.75\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.56\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=8.2\right.$ and 6.8 Hz and $\left.{ }^{4} J_{\mathrm{HH}}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.51\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}\right.$ and ${ }^{4} J_{\mathrm{HH}}=1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.16\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.03-2.92(\mathrm{~m}, 1 \mathrm{H}), 2.12-1.63(\mathrm{~m}, 13 \mathrm{H})$, 1.61-1.42 (m, 4H), 1.39-1.12 (m, 7H), 1.07-0.96(m, 1H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 136.9\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=\right.$ $2.9 \mathrm{~Hz}), 133.7,133.3,128.5,127.3,126.2,126.1,125.3,124.4,122.5,36.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=68.1 \mathrm{~Hz}\right), 36.9$ $\left(\mathrm{d},{ }^{1} J_{\mathrm{CP}}=67.1 \mathrm{~Hz}\right), 26.8\left(\mathrm{~d}, J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right), 26.7\left(\mathrm{~d}, J_{\mathrm{CP}}=12.5 \mathrm{~Hz}\right), 26.64\left(\mathrm{~d}, J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right), 26.61(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=11.5 \mathrm{~Hz}\right), 26.21\left(\mathrm{~d}, J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 26.16\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 26.12\left(\mathrm{~d}, J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 26.10\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=1.9 \mathrm{~Hz}), 25.5\left(\mathrm{~d}, J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right), 25.4\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 16.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 11.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=4.8 \mathrm{~Hz}\right)$, $9.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=85.3 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 48.4$ (s). HRMS (FAB) calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{OP}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 381.2342, found 381.2348 .

Table 2, Entry 7 (Compound 3ga). White solid. 86\% yield (3ga/(4ga+4ga') $=97 / 3$, 4ga/4ga' $=96 / 4$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.83-7.74(\mathrm{~m}, 3 \mathrm{H}), 7.56(\mathrm{~s}, 1 \mathrm{H}), 7.50-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.21\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=8.7 \mathrm{~Hz}\right.$ and $\left.{ }^{4} J_{\mathrm{HH}}=1.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.63-2.52(\mathrm{~m}, 1 \mathrm{H}), 2.11-1.07(\mathrm{~m}, 24 \mathrm{H}), 0.98-0.85(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 138.5\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 133.6,132.3,128.3,127.7,127.4,126.3,125.4,124.3,124.2,36.8$
$\left(\mathrm{d}, J_{\mathrm{CP}}=68.1 \mathrm{~Hz}\right), 36.4\left(\mathrm{~d}, J_{\mathrm{CP}}=68.1 \mathrm{~Hz}\right), 26.69\left(\mathrm{~d}, J_{\mathrm{CP}}=13.4 \mathrm{~Hz}\right), 26.68\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 26.6(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 26.5\left(\mathrm{~d}, J_{\mathrm{CP}}=12.5 \mathrm{~Hz}\right), 26.13\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 26.09\left(\mathrm{~d}, J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 26.0\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $2.9 \mathrm{~Hz}), 25.9,25.5\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 25.3\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 19.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 13.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=83.4\right.$ $\mathrm{Hz}), 11.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=4.8 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 48.1$ (s). HRMS (FAB) calcd for $\mathrm{C}_{25} \mathrm{H}_{34} \mathrm{OP}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) 381.2342$, found 381.2343 .

Table 2, Entry 8 (Compound 3ha). Colorless oil. 82% yield (3ha/(4ha+4ha') $=90 / 10$, 4ha/4ha' $=$ 80/20).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.09\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=5.1 \mathrm{~Hz}\right.$ and $\left.{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.91\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=5.1\right.$ and 3.4 $\mathrm{Hz}, 1 \mathrm{H}), 6.85-6.82(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.57(\mathrm{~m}, 1 \mathrm{H}), 2.07-1.63(\mathrm{~m}, 12 \mathrm{H}), 1.58-1.38(\mathrm{~m}, 5 \mathrm{H}), 1.34-1.18(\mathrm{~m}$, $7 \mathrm{H}), 0.87-0.77(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 145.4\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 127.0,123.7,122.8,36.7$ $\left(\mathrm{d},{ }^{1} J_{\mathrm{CP}}=67.1 \mathrm{~Hz}\right), 36.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=68.0 \mathrm{~Hz}\right), 26.7\left(\mathrm{~d}, J_{\mathrm{CP}}=12.5 \mathrm{~Hz}\right), 26.6\left(\mathrm{~d}, J_{\mathrm{CP}}=11.5 \mathrm{~Hz}\right), 26.13(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 26.06,26.0\left(\mathrm{~d}, J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 25.4\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 25.3\left(\mathrm{~d}, J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right), 14.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}\right.$ $=3.8 \mathrm{~Hz}), 14.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=82.4 \mathrm{~Hz}\right), 12.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 47.6(\mathrm{~s})$. HRMS (FAB) calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{OPS}\left(\mathrm{M}+\mathrm{H}^{+}\right) 337.1749$, found 337.1756.

Table 2, Entry 9 (Compound 3ia). The reaction was conducted in the absence of HMPA. Colorless oil. 82% yield (3ia/4ia $=96 / 4$, trans $/$ cis $=96 / 4$ for 3ia).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.38\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.34-7.18(\mathrm{~m}, 8 \mathrm{H}), 5.46\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=10.2 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 2.26-1.15 (m, 24H), 1.03-0.95 (m, 1H), 0.69-0.59 (m, 1H). ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 142.34,142.26$, 139.6, $131.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 130.0,128.5,128.3,127.4,127.1,127.0,36.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=67.1 \mathrm{~Hz}\right), 36.4$ $\left(\mathrm{d},{ }^{1} J_{\mathrm{CP}}=68.1 \mathrm{~Hz}\right), 26.74\left(\mathrm{~d}, J_{\mathrm{CP}}=10.5 \mathrm{~Hz}\right), 26.70\left(\mathrm{~d}, J_{\mathrm{CP}}=12.5 \mathrm{~Hz}\right), 26.65\left(\mathrm{~d}, J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right), 26.5(\mathrm{~d}$, $\left.J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right), 26.14,26.12,26.07\left(\mathrm{~d}, J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 25.4\left(\mathrm{~d}, J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right), 25.2\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 15.8$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 12.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=83.4 \mathrm{~Hz}\right), 10.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=4.8 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 47.5(\mathrm{~s})$. HRMS (FAB) calcd for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{OP}\left(\mathrm{M}+\mathrm{H}^{+}\right) 433.2655$, found 433.2663.

Table 2, Entry 10 (Compound 4ja). Yellow oil. 90% yield ($\left.\mathbf{3 j a} /\left(\mathbf{4 j a} \mathbf{a} \mathbf{4 j a} \mathbf{a}^{\mathbf{\prime}}\right)=0 / 100, \mathbf{4 j a} / \mathbf{4 j a} \mathbf{a}=94 / 6\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 5.64-5.53(\mathrm{~m}, 1 \mathrm{H}), 5.52-5.40(\mathrm{~m}, 1 \mathrm{H}), 2.55\left(\mathrm{dd},{ }^{2} J_{\mathrm{HP}}=14.1 \mathrm{~Hz}\right.$ and ${ }^{3} J_{\mathrm{HH}}=7.3$ $\mathrm{Hz}, 2 \mathrm{H}), 2.08-1.65(\mathrm{~m}, 14 \mathrm{H}), 1.53-1.16(\mathrm{~m}, 12 \mathrm{H}), 0.90\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.3 \mathrm{~Hz}, 3 \mathrm{H}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right)$:
$\delta 135.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=11.5 \mathrm{~Hz}\right), 120.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=8.6 \mathrm{~Hz}\right), 35.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=63.3 \mathrm{~Hz}\right), 34.8,29.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=58.5\right.$ $\mathrm{Hz}), 26.7\left(\mathrm{~d}, J_{\mathrm{CP}}=11.5 \mathrm{~Hz}\right), 26.6\left(\mathrm{~d}, J_{\mathrm{CP}}=11.5 \mathrm{~Hz}\right), 26.1,25.8,25.5,22.5,13.7 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 49.5(\mathrm{~s})$. HRMS (FAB) calcd for $\mathrm{C}_{18} \mathrm{H}_{34} \mathrm{OP}\left(\mathrm{M}+\mathrm{H}^{+}\right)$297.2342, found 297.2348.

Table 2, Entry 11 (Compound 3ka). The reaction was conducted in the absence of HMPA. White solid. 70% yield ($\mathbf{3 k a} / 4 \mathbf{k a}=100 / 0$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 2.30-1.15(\mathrm{~m}, 25 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), 1.13-0.90(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right)$: $\delta 172.3,81.0,36.9$ (br), 36.1 (br), 28.1, 26.60, 26.58, 26.56, 26.12, 26.08, 26.0, 25.22, 25.17, 17.2, 12.6 (br), $9.6 .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 47.9(\mathrm{~s})$. HRMS (FAB) calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{P}\left(\mathrm{M}+\mathrm{H}^{+}\right) 355.2397$, found 355.2395 .

Table 2, Entry 12 (Compound 3bb). White solid. 70\% yield (3bb/4bb = 100/0).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): ~ \delta 7.60-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.51\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.43\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $7.33\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.18\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.58-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.04(\mathrm{~m}, 2 \mathrm{H}), 2.03-$ $1.47(\mathrm{~m}, 17 \mathrm{H}), 1.30-1.19(\mathrm{~m}, 1 \mathrm{H}), 0.97-0.84(\mathrm{~m} \mathrm{1H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 140.8,140.3\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}\right.$ $=2.9 \mathrm{~Hz}), 139.2,128.8,127.3,127.2,127.0,126.3,38.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=70.9 \mathrm{~Hz}\right), 38.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=71.9 \mathrm{~Hz}\right)$, $27.064,27.055\left(\mathrm{~d}, J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 26.6\left(\mathrm{~d}, J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 26.5\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 26.43\left(\mathrm{~d}, J_{\mathrm{CP}}=9.6 \mathrm{~Hz}\right)$, 26.42, 26.32, $26.30\left(\mathrm{~d}, J_{\mathrm{CP}}=9.6 \mathrm{~Hz}\right), 18.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 15.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=87.2 \mathrm{~Hz}\right), 11.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=\right.$ $4.8 \mathrm{~Hz}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 48.2$ (s). HRMS (FAB) calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{OP}\left(\mathrm{M}+\mathrm{H}^{+}\right)$379.2185, found 379.2192.

Table 2, Entry 13 (Compound 3bc). Colorless oil. 82% yield (3bc/4bc = 97/3).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.60-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.52\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7,43\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $7.33\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.18\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.55-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.65-$
$1.51(\mathrm{~m}, 1 \mathrm{H}), 1.36-1.14(\mathrm{~m}, 13 \mathrm{H}), 0.95-0.80(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 140.7,139.9\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}\right.$ $=1.9 \mathrm{~Hz}), 139.2,128.8,127.3,127.2,126.9,126.2,26.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=67.1 \mathrm{~Hz}\right), 26.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=68.1 \mathrm{~Hz}\right)$, $18.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 16.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 16.2\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 15.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right), 15.6(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 13.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=84.4 \mathrm{~Hz}\right), 11.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=4.8 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 53.1(\mathrm{~s})$. HRMS (FAB) calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{OP}\left(\mathrm{M}+\mathrm{H}^{+}\right) 327.1872$, found 327.1869.

Table 2, Entry 14 (Compound 3bd). White solid. 86\% yield (3bd/4bd = 100/0).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.60-7.55(\mathrm{~m}, 2 \mathrm{H}), 7.52\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.43\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $7.33\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.18\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.59-2.50(\mathrm{~m}, 1 \mathrm{H}), 2.27-2.08(\mathrm{~m}, 2 \mathrm{H}), 1.83-$ $1.55(\mathrm{~m}, 5 \mathrm{H}), 1.33-1.24(\mathrm{~m}, 1 \mathrm{H}), 1.12\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.11\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.3 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.08\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}\right.$ $=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.03\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.00-0.89(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 140.8,140.0(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 139.3,128.8,127.3,127.2,127.0,126.3,39.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=68.1 \mathrm{~Hz}\right), 39.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=67.1\right.$ $\mathrm{Hz}), 25.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=9.6 \mathrm{~Hz}\right), 25.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=8.6 \mathrm{~Hz}\right), 24.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=7.7 \mathrm{~Hz}\right), 24.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=7.7 \mathrm{~Hz}\right)$, $23.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right), 23.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right), 19.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 19.2\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=87.2 \mathrm{~Hz}\right), 12.0$ $\left(\mathrm{d},{ }^{2} J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 42.9(\mathrm{~s})$. HRMS (FAB) calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{OP}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 355.2185, found 355.2191 .

Table 2, Entry 15 (Compound 3be). Yellow solid. 88\% yield (3be/(4be+4be') $=89 / 11, \mathbf{4 j a} / \mathbf{4 j a} \mathbf{a}^{\mathbf{\prime}}=$ 62/38).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.57\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.52\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.43\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.8\right.$ $\mathrm{Hz}, 2 \mathrm{H}), 7.33\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.18\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.53-2.43(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.55(\mathrm{~m}$, $1 \mathrm{H}), 1.33-1.27(\mathrm{~m}, 1 \mathrm{H}), 1.35\left(\mathrm{~d},{ }^{3} J_{\mathrm{HP}}=13.3 \mathrm{~Hz}, 9 \mathrm{H}\right), 1.28\left(\mathrm{~d},{ }^{3} J_{\mathrm{HP}}=13.3 \mathrm{~Hz}, 9 \mathrm{H}\right), 1.14-1.02(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 140.8,140.1\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 139.2,128.8,127.3,127.2,127.0,126.2$, $36.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=61.3 \mathrm{~Hz}\right), 36.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=62.3 \mathrm{~Hz}\right), 27.2,19.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 13.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=77.6\right.$ $\mathrm{Hz}), 13.1\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=4.8 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 57.2(\mathrm{~s})$. HRMS (FAB) calcd for $\mathrm{C}_{23} \mathrm{H}_{32} \mathrm{OP}$ $\left(\mathrm{M}+\mathrm{H}^{+}\right) 355.2185$, found 355.2202 .

Table 2, Entry 16 (Compound 4bf). White solid. 80% yield ($\mathbf{3 b f} / \mathbf{4 b f}=0 / 100$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.87-7.73(\mathrm{~m}, 4 \mathrm{H}), 7.63-7.45(\mathrm{~m}, 10 \mathrm{H}), 7.42\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.38-7.29$ $(\mathrm{m}, 3 \mathrm{H}), 6.46\left(\mathrm{dd},{ }^{3} J_{\mathrm{HH}}=15.6 \mathrm{~Hz}\right.$ and $\left.{ }^{4} J_{\mathrm{HP}}=4.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.23\left(\mathrm{dtd},{ }^{3} J_{\mathrm{HH}}=15.6\right.$ and 7.6 Hz and ${ }^{3} J_{\mathrm{HP}}$ $=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.32\left(\mathrm{ddd},{ }^{2} J_{\mathrm{HP}}=14.7 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}\right.$, and $\left.{ }^{4} J_{\mathrm{HH}}=1.4 \mathrm{~Hz}, 2 \mathrm{H}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 140.7,140.5,135.9\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 135.2\left(\mathrm{~d}, J_{\mathrm{CP}}=12.5 \mathrm{~Hz}\right), 132.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=98.7 \mathrm{~Hz}\right)$, $132.0\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 131.2\left(\mathrm{~d}, J_{\mathrm{CP}}=8.6 \mathrm{~Hz}\right), 128.9,128.7\left(\mathrm{~d}, J_{\mathrm{CP}}=11.5 \mathrm{~Hz}\right), 127.4,127.3,127.0$, $126.8,118.7\left(\mathrm{~d},{ }^{3} \mathrm{~J}_{\mathrm{CP}}=9.6 \mathrm{~Hz}\right), 35.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=68.1 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 30.0(\mathrm{~s})$. HRMS (FAB) calcd for $\mathrm{C}_{27} \mathrm{H}_{24} \mathrm{OP}\left(\mathrm{M}+\mathrm{H}^{+}\right) 395.1559$, found 395.1560 .

Table 2, Entry 17 (Compound 3nf). White solid. 76\% yield (3nf/4nf = 100/0).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.94\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.82-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.58-7.38(\mathrm{~m}, 6 \mathrm{H}), 7.15(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{HH}}=8.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.89(\mathrm{~s}, 3 \mathrm{H}), 2.77-2.63(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.58(\mathrm{~m}, 1 \mathrm{H}), 1.52-1.40$ $(\mathrm{m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 166.8,145.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 133.3\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=104 \mathrm{~Hz}\right), 131.98$, $131.96,131.9,131.09\left(\mathrm{~d}, J_{\mathrm{CP}}=9.6 \mathrm{~Hz}\right), 131.07\left(\mathrm{~d}, J_{\mathrm{CP}}=9.6 \mathrm{~Hz}\right), 130.0,128.70\left(\mathrm{~d}, J_{\mathrm{CP}}=12.5 \mathrm{~Hz}\right)$, $128.68\left(\mathrm{~d}, J_{\mathrm{CP}}=11.5 \mathrm{~Hz}\right), 128.5,126.0,52.1,21.0\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 19.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=99.7 \mathrm{~Hz}\right), 12.8(\mathrm{~d}$, $\left.{ }^{2} J_{\mathrm{CP}}=4.8 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 30.1(\mathrm{~s})$. HRMS (FAB) calcd for $\mathrm{C}_{23} \mathrm{H}_{22} \mathrm{O}_{3} \mathrm{P}\left(\mathrm{M}+\mathrm{H}^{+}\right)$ 377.1301, found 377.1307 .

Equation 1 (Compound 3la). White solid. 92\% yield (3la/4la $=85 / 15$).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.36-7.28(\mathrm{~m}, 6 \mathrm{H}), 7.25-7.19(\mathrm{~m}, 3 \mathrm{H}), 7.15\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.42(\mathrm{ddd}$, ${ }^{2} J_{\mathrm{HP}}=14.2 \mathrm{~Hz}$ and ${ }^{3} J_{\mathrm{HH}}=7.4$ and $\left.4.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.03-1.02(\mathrm{~m}, 24 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{\{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 146.5$ $\left(\mathrm{d},{ }^{3} J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 139.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 129.8,128.9,128.6,127.8,126.7,126.6,38.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=\right.$ $67.1 \mathrm{~Hz}), 37.9\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=67.1 \mathrm{~Hz}\right), 36.4\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=4.8 \mathrm{~Hz}\right), 27.0\left(\mathrm{~d}, J_{\mathrm{CP}}=12.5 \mathrm{~Hz}\right), 26.9\left(\mathrm{~d}, J_{\mathrm{CP}}=12.5\right.$ $\mathrm{Hz}), 26.8\left(\mathrm{~d}, J_{\mathrm{CP}}=11.5 \mathrm{~Hz}\right), 26.7\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 26.6\left(\mathrm{~d}, J_{\mathrm{CP}}=6.7 \mathrm{~Hz}\right), 26.4\left(\mathrm{~d}, J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 26.23$ $\left(\mathrm{d}, J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 26.21\left(\mathrm{~d}, J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 26.1\left(\mathrm{~d}, J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 26.0\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 19.1\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=\right.$ $81.5 \mathrm{~Hz}), 16.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 47.0(\mathrm{~s})$. HRMS (FAB) calcd for $\mathrm{C}_{2} 7 \mathrm{H}_{36} \mathrm{OP}$
$\left(\mathrm{M}+\mathrm{H}^{+}\right) 407.2498$, found 407.2506.

Equation 2 (Compound 3ma). White solid. 94% yield (3ma/4ma' $=97 / 3$, $\mathrm{dr}=87 / 13$ for $\mathbf{3 m a}$). The relative configurations were assigned by coupling constants in ${ }^{1} \mathrm{H}$ NMR as well as HMQC data.

Major diastereomer: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.31\left(\mathrm{t},{ }^{3} \mathrm{~J}_{\mathrm{HH}}=7.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.25-7.20(\mathrm{~m}, 1 \mathrm{H}), 7.20-7.15$ $(\mathrm{m}, 2 \mathrm{H}), 2.66\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HP}}=11.4 \mathrm{~Hz}\right.$ and ${ }^{3} J_{\mathrm{HH}}=9.2$ and $\left.6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.09-1.04(\mathrm{~m}, 23 \mathrm{H}), 0.90\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}\right.$ $=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.74\left(\mathrm{dt},{ }^{2} J_{\mathrm{HP}}=14.2 \mathrm{~Hz}\right.$ and $\left.{ }^{3} J_{\mathrm{HH}}=6.2 \mathrm{~Hz}, 1 \mathrm{H}\right) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\} \mathrm{NMR}\left(\mathrm{CDCl}_{3}\right): \delta 136.9(\mathrm{~d}$, $\left.{ }^{3} J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 129.0,128.2,126.3,36.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=67.1 \mathrm{~Hz}\right), 36.5\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=68.0 \mathrm{~Hz}\right), 26.73\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $12.5 \mathrm{~Hz}), 26.69\left(\mathrm{~d}, J_{\mathrm{CP}}=12.4 \mathrm{~Hz}\right), 26.61\left(\mathrm{~d}, J_{\mathrm{CP}}=11.5 \mathrm{~Hz}\right), 26.57\left(\mathrm{~d}, J_{\mathrm{CP}}=10.5 \mathrm{~Hz}\right), 26.134\left(\mathrm{~d}, J_{\mathrm{CP}}=\right.$ $4.8 \mathrm{~Hz}), 26.130,26.10\left(\mathrm{~d}, J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 26.08\left(\mathrm{~d}, J_{\mathrm{CP}}=2.9 \mathrm{~Hz}\right), 25.34\left(\mathrm{~d}, J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right), 25.27\left(\mathrm{~d}, J_{\mathrm{CP}}\right.$ $=3.8 \mathrm{~Hz}), 24.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right), 16.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=4.8 \mathrm{~Hz}\right), 14.6\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=85.3 \mathrm{~Hz}\right) 12.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=2.9\right.$ $\mathrm{Hz}) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 48.9(\mathrm{~s})$. HRMS (FAB) calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{OP}\left(\mathrm{M}+\mathrm{H}^{+}\right) 345.2342$, found 345.2355 .

Equation 3, using substrate 5. White solid. 77\% yield (3aa/4aa=99/1).

Equation 3, using substrate 6. The reaction was conducted at $40^{\circ} \mathrm{C}$. White solid. 71% yield $\left(\mathbf{3 a a} /\left(\mathbf{4 a} \mathbf{a}+\mathbf{4 a a} \mathbf{a}^{\prime}\right)=90 / 10, \mathbf{4 a} \mathbf{a} / \mathbf{4} \mathbf{a} \mathbf{a}^{\mathbf{\prime}}=71 / 29\right)$.

Equation 3, using substrate 7. $61 \%{ }^{1} \mathrm{H}$ NMR yield (3aa/(4aa+4aa') $=0 / 100$, 4aa/4aa' $=92 / 8$).

Scheme 2a (Compound trans-3ad). White solid. 82\% yield (3ad/4ad = 100/0).
${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.28\left(\mathrm{t},{ }^{3} J_{\mathrm{HH}}=7.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.20\left(\mathrm{tt},{ }^{3} J_{\mathrm{HH}}=7.4 \mathrm{~Hz}\right.$ and $\left.{ }^{4} J_{\mathrm{HH}}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right)$,
7.13-7.09 (m, 2H), $2.49\left(\mathrm{ddt},{ }^{3} J_{\mathrm{HP}}=12.4 \mathrm{~Hz},{ }^{3} J_{\mathrm{HH}}=8.8 \mathrm{~Hz}\right.$ and $\left.5.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.25-2.06(\mathrm{~m}, 2 \mathrm{H}), 1.80-$ $1.61(\mathrm{~m}, 4 \mathrm{H}), 1.60-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.28-1.21(\mathrm{~m}, 1 \mathrm{H}), 1.11\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.10\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.5\right.$ $\mathrm{Hz}, 3 \mathrm{H}), 1.06\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 3 \mathrm{H}\right), 1.01\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.94-0.86(\mathrm{~m}, 1 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 140.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=1.9 \mathrm{~Hz}\right), 128.6,126.3,125.9,39.8\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=68.1 \mathrm{~Hz}\right), 39.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=66.1\right.$ $\mathrm{Hz}), 25.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=9.6 \mathrm{~Hz}, 2 \mathrm{C}\right), 24.9\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=7.7 \mathrm{~Hz}\right), 24.7\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=7.7 \mathrm{~Hz}\right), 23.7\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=3.8\right.$ $\mathrm{Hz}), 23.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=4.8 \mathrm{~Hz}\right), 19.8\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right), 19.0\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=88.2 \mathrm{~Hz}\right), 11.9\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=4.8 \mathrm{~Hz}\right)$. ${ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right)$: $\delta 43.0(\mathrm{~s})$. HRMS (FAB) calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{OP}\left(\mathrm{M}+\mathrm{H}^{+}\right)$279.1872, found 279.1878.

Scheme 2b (Compound trans/cis-3ad). Colorless oil. 82\% yield (3ad/(4ad+4ad') $=91 / 9$, trans/cis $=$ $33 / 67$ for 3ad, $E / Z=44 / 56$ for 4ad, 4ad/4ad' $=94 / 6$). Pure $c i s$ - $\mathbf{3 a d}$ for analysis was obtained by GPC with CHCl_{3}.
cis-3ad: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 7.38\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=7.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.30-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.19\left(\mathrm{tt},{ }^{3} J_{\mathrm{HH}}=7.4\right.$ Hz and $\left.{ }^{4} J_{\mathrm{HH}}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.52-2.43(\mathrm{~m}, 1 \mathrm{H}), 2.23-2.11(\mathrm{~m}, 1 \mathrm{H}), 1.89-1.75(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.56(\mathrm{~m}$, $1 \mathrm{H}), 1.48\left(\mathrm{ddd},{ }^{2} J_{\mathrm{HH}}=15.1 \mathrm{~Hz},{ }^{2} J_{\mathrm{HP}}=10.0 \mathrm{~Hz}\right.$, and $\left.{ }^{3} J_{\mathrm{HH}}=7.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.45-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.33(\mathrm{td}$, ${ }^{2} J=14.6 \mathrm{~Hz}$ and $\left.{ }^{3} J_{\mathrm{HH}}=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.14\left(\mathrm{ddd},{ }^{2} J_{\mathrm{HH}}=15.1 \mathrm{~Hz},{ }^{2} J_{\mathrm{HP}}=12.4 \mathrm{~Hz}\right.$, and ${ }^{3} J_{\mathrm{HH}}=6.3 \mathrm{~Hz}$, $1 \mathrm{H}), 1.10-0.99(\mathrm{~m}, 1 \mathrm{H}), 1.06\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 6 \mathrm{H}\right), 0.85\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.6 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.83\left(\mathrm{~d},{ }^{3} J_{\mathrm{HH}}=6.6\right.$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 136.8\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=4.8 \mathrm{~Hz}\right), 129.2,128.0,126.6,40.4\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=67.1\right.$ $\mathrm{Hz}), 38.7\left(\mathrm{~d},{ }^{1} J_{\mathrm{CP}}=67.1 \mathrm{~Hz}\right), 25.0\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=8.6 \mathrm{~Hz}\right), 24.80\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=9.6 \mathrm{~Hz}\right), 24.76\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=7.7 \mathrm{~Hz}\right)$, $24.6\left(\mathrm{~d},{ }^{3} J_{\mathrm{CP}}=8.6 \mathrm{~Hz}\right), 23.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=4.8 \mathrm{~Hz}\right), 23.5\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right), 23.3\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=4.8 \mathrm{~Hz}\right), 18.0(\mathrm{~d}$, $\left.{ }^{1} J_{\mathrm{CP}}=89.1 \mathrm{~Hz}\right), 8.6\left(\mathrm{~d},{ }^{2} J_{\mathrm{CP}}=3.8 \mathrm{~Hz}\right) .{ }^{31} \mathrm{P}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 43.6(\mathrm{~s})$. HRMS (FAB) calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{OP}\left(\mathrm{M}+\mathrm{H}^{+}\right)$279.1872, found 279.1873.

Comparison between Silicon and Phosphorus Nucleophiles.

Previously, we reported a related cyclopropanation reaction of allyl phosphates using a silicon nucleophile derived from a silylboronate and $\mathrm{KN}\left(\mathrm{SiMe}_{3}\right)_{2}$, and we proposed that the effective nucleophile would be a silylpotassium species. ${ }^{2}$ To make a direct comparison with the present reaction using lithium phosphides, we conducted a reaction of cinnamyl phosphate $\mathbf{1 a}$ with $\mathrm{LiSiMe}_{2} \mathrm{Ph}$ in THF at $0^{\circ} \mathrm{C}$ in the absence of HMPA (eqn (S1)). As a result, cyclopropanation product $\mathbf{S} 1$ was selectively obtained along with a small amount of allylic substitution product $\mathbf{S} 2$ in 64% combined yield in the ratio of $97 / 3$. By comparing this result with the ones obtained in Table 1, entries 5, 6, and 8, a silyllithium is considered to be more nucleophilic than a lithium phosphide, and HMPA presumably coordinates to lithium to increase the nucleophilicity of the phosphide in the present reaction.

Lithium ($38.7 \mathrm{mg}, 0.990 \mathrm{mmol}$; cut in small pieces) was added to a solution of 1,2diphenyltetramethyldisilane ($163 \mathrm{mg}, 0.603 \mathrm{mmol}$) in THF $(2.0 \mathrm{~mL})$ at $-5{ }^{\circ} \mathrm{C}$. The mixture was sonicated for 30 min at $0{ }^{\circ} \mathrm{C}$ and further stirred for 15 h at $-5^{\circ} \mathrm{C}$ to generate a solution of dimethylphenylsilyllithium. One half of this solution was taken and diluted with THF (0.5 mL). Compound $\mathbf{1 a}(81.8 \mathrm{mg}, 0.303 \mathrm{mmol})$ was then added to it at $0^{\circ} \mathrm{C}$, and the reaction mixture was stirred for 3 h at $0^{\circ} \mathrm{C}$. After dilution with $\mathrm{Et}_{2} \mathrm{O}$, the mixture was passed through a pad of silica gel with EtOAc, and the solvent was removed under vacuum. The residue was purified by silica gel preparative TLC with hexane to afford compounds $\mathbf{S 1} / \mathbf{S} 2$ as a colorless oil $(48.6 \mathrm{mg}, 0.193 \mathrm{mmol} ; 64 \%$ yield, $\mathbf{S 1} / \mathbf{S} 2=$ 97/3).

S1: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): ~ \delta 7.61-7.53(\mathrm{~m}, 2 \mathrm{H}), 7.40-7.33(\mathrm{~m}, 3 \mathrm{H}), 7.28-7.22(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.07(\mathrm{~m}$, $3 \mathrm{H}), 1.84\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=7.3,6.4\right.$, and $\left.4.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.06\left(\mathrm{ddd},{ }^{3} J_{\mathrm{HH}}=10.1\right.$ and 4.6 Hz and ${ }^{2} J_{\mathrm{HH}}=3.6 \mathrm{~Hz}$, $1 \mathrm{H}), 0.94\left(\mathrm{td},{ }^{3} J_{\mathrm{HH}}=7.6 \mathrm{~Hz}\right.$ and $\left.{ }^{2} J_{\mathrm{HH}}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 0.29(\mathrm{~s}, 3 \mathrm{H}), 0.28(\mathrm{~s}, 3 \mathrm{H}), 0.31-0.23(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta 144.2,138.7,134.0,129.2,128.4,127.9,125.8,125.6,20.1,13.1,9.5,-3.5$, -3.7.

IV. X-ray Crystal Structure

Compound 3ca

A colorless toluene/hexane solution of compound 3ca was prepared. Crystals suitable for X-ray analysis were obtained by slow evaporation of the solvents at room temperature. The crystal structure has been deposited at the Cambridge Crystallographic Data Centre (deposition number: CCDC 2016109). The data can be obtained free of charge via the Internet at www.ccdc.cam.ac.uk/conts/retrieving.html.

Crystal Data and Structure Refinement.

Empirical Formula	$\mathrm{C}_{21} \mathrm{H}_{30} \mathrm{ClOP}$	
Formula Weight	364.87	
Temperature	$113 \pm 2 \mathrm{~K}$	
Wavelength	$0.71075 \AA$	
Crystal System	Trilinic	
Space Group	P-1	
Unit Cell Dimensions	a $=5.7668(15) ~$ $\mathrm{~b}=11.743(3) \AA$ $\mathrm{c}=28.998(7) \AA$	$\alpha=95.169(6)^{\circ}$ $\beta=90.067(6)^{\circ}$ $\gamma=102.805(7)^{\circ}$

Volume	1906.7(8) \AA^{3}
Z Value	4
Calculated Density	$1.271 \mathrm{~g} / \mathrm{cm}^{3}$
Absorption coefficient	$0.290 \mathrm{~mm}^{-1}$
$F(000)$	784
Crystal size	$0.300 \times 0.250 \times 0.200 \mathrm{~mm}$
Theta Range for Data Collection	3.197-27.590 ${ }^{\circ}$
Index Ranges	$-7 \leq \mathrm{h} \leq 7,-15 \leq \mathrm{k} \leq 15,-37 \leq 1 \leq 37$
Reflections Collected	31173
Independent Reflections	$8342[\mathrm{R}(\mathrm{int})=0.0822]$
Completeness to Theta $=25.242^{\circ}$	96.0\%
Absorption Correction	Semi-empirical from equivalents
Max. and Min. Transmission	1.000 and 0.667
Refinement Method	Full-matrix least-squares on F^{2}
Data / Restraints / Parameters	8342 / 0 / 433
Goodness-of-Fit on F^{2}	1.008
Final R Indices [$1>2 \operatorname{sigma}(\mathrm{I})$]	$\mathrm{R} 1=0.0623, \mathrm{wR} 2=0.1669$
R Indices (All Data)	$\mathrm{R} 1=0.0731, \mathrm{wR} 2=0.1708$
Largest Diff. Peak and Hole	1.411 and $-0.511 \mathrm{e}^{-/} / \AA^{3}$

V. ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR Spectra

compound $\mathbf{1 k}$

compound $\mathbf{1 k}$

compound 1m

compound 1m

compound 4aa (3aa)

compound 4aa (3aa)

compound 3aa (4aa)

compound 3aa (4aa)
compound 3ba (4ba)

compound $\mathbf{3 b a}(\mathbf{4 b a})$

compound 3ca (4ca)

compound 3ca (4ca)

compound 3da (4da)

compound 3da (4da)

compound 3ea (4ea)

compound 3ea (4ea)

compound $\mathbf{3 f a}$ (4fa)

compound 3fa (4fa)

compound 3ga (4ga)

compound 3ga (4ga)

compound 3ha (4ha)

compound 3ha (4ha)

compound 3ia (4ia)

compound 3ia (4ia)

compound $\mathbf{4 j a}$

compound $\mathbf{4 j a}$

compound 3ka

compound $\mathbf{3 k a}$

compound 3la (4la)

compound 3la (4la)

compound 3ma (4ma')

compound $\mathbf{3 m a}$ ($4 \mathrm{ma}{ }^{\prime}$)

compound 3ma (4ma') HMQC spectrum (alkyl region)

compound 3bb

compound 3bb

140.8234
-140.2704
140.2418
139.2311
$=\left[\begin{array}{r}128.8287 \\ 127.3031 \\ 127.2364 \\ 126.9694 \\ 126.2925\end{array}\right.$
$=\left[\begin{array}{l}77.4746 \\ 77.1600 \\ 76.8358 \\ 39.0116 \\ 38.8781 \\ 38.3060 \\ 38.1630 \\ 27.0645 \\ 27.0455 \\ 26.5973 \\ 26.5783 \\ 26.4734 \\ 26.4448 \\ 26.4162 \\ 26.3780 \\ 26.3494 \\ 26.3208 \\ 26.2541 \\ 18.7979 \\ 18.7693 \\ 16.1950 \\ 15.3273 \\ 11.5515 \\ 11.5039\end{array}\right.$
compound $3 \mathrm{bc}(\mathbf{4 b c})$

compound 3bc (4bc)

compound 3bd

compound 3bd

compound 3be (4be)

compound 3be (4be)

compound 4bf

compound 4bf

compound 3nf

compound 3nf

compound trans-3ad

compound trans-3ad

compound cis-3ad

compound cis-3ad

compound S1 (S2)

compound S1 (S2)

VI. References

${ }^{1}$ Murahashi, S.-I.; Taniguchi, Y.; Imada, Y.; Tanigawa, Y. J. Org. Chem. 1989, 54, 3292.
${ }^{2}$ Shintani, R.; Fujie, R.; Takeda, M.; Nozaki, K. Angew. Chem., Int. Ed. 2014, 53, 6546.
${ }^{3}$ Maslak, V.; Tokic-Vujosevic, Z.; Saicic, R. N. Tetrahedron Lett. 2009, 50, 1858.
${ }^{4}$ Shintani, R.; Takatsu, K.; Takeda, M.; Hayashi, T. Angew. Chem., Int. Ed. 2011, 50, 8656.
${ }^{5}$ Kawashima, H.; Ogawa, N.; Saeki, R.; Kobayashi, Y. Chem. Commun. 2016, 52, 4918.
${ }^{6}$ Shi, Y.; Jung, B.; Torker, S.; Hoveyda, A. H. J. Am Chem. Soc. 2015, 137, 8948.
${ }^{7}$ Xu, Q.-L.; Dai, L.-X.; You, S.-L. Org. Lett. 2010, 12, 800.
${ }^{8}$ Li, H.; Chen, H.; Zhou, Y.; Huang, J.; Yi, J.; Zhao, H.; Wang, W.; Jing, L. Chem. Asian J. 2020, 15, 555.
${ }^{9}$ Horn, A.; Kazmaier, U. Org. Lett. 2019, 21, 4595.

