Electronic Supporting Information

for

Straightforward Chemoselective Access to Unsymmetrical Dithioacetals through a Thiosulfonates Homologation-Nucleophilic Substitution Sequence

Laura Ielo,^a Veronica Pillari,^a Natalie Gajic,^b Wolfgang Holzer^a and Vittorio Pace^{a,c*}

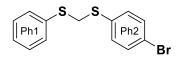
^a University of Vienna - Department of Pharmaceutical Chemistry. Althanstrasse, 14, 1090, Vienna, Austria. E-mail: <u>vittorio.pace@univie.ac.at; vittorio.pace@unito.it</u> Web: <u>http://drugsynthesis.univie.ac.at/.</u>

<u>b University of Vienna –</u> X-Ray Structure Analysis Center - Waehringerstrasse 42,_1090, Vienna, Austria. <u>c</u> University of Turin – Department of Chemistry. Via P. Giuria 7, 10125, Turin, Italy.

Table of Contents

1. General Methods	3
2. General Procedure	4
3. Spectral and Characterization Data	5
4. Applications	21
5. X-Ray Analysis of Compound 10, 15 and 28	23
6. References	28
7. Copies of ¹ H- and ¹³ C-NMR Spectra for all the compounds	29

1. General Methods

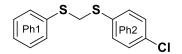

Melting points were determined on a Reichert–Kofler hot-stage microscope and are uncorrected. Mass spectra were obtained on a Shimadzu QP 1000 instrument (EI, 70 eV) and on a Bruker maXis 4G instrument (ESI-TOF, HRMS). ¹H, ¹³C, ¹⁹F and ¹⁵N NMR spectra were recorded with a Bruker Avance III 400 spectrometer (400 MHz for ¹H, 100 MHz for ¹³C, 376 MHz for ¹⁹F and 40 MHz for ¹⁵N) at 298 K using a directly detecting broadband observe (BBFO) probe. The center of the (residual) solvent signal was used as an internal standard which was related to TMS with δ 7.26 ppm (¹H in CDCl₃) and δ 77.0 ppm (¹³C in CDCl₃). ¹⁹F NMR spectra were referenced via the Ξ ratio (absolute referencing). ¹⁵N NMR spectra (gs-HMBC, gs-HSQC) were referenced against neat, external nitromethane. Spin-spin coupling constants (*J*) are given in Hz. In nearly all cases, full and unambiguous assignment of all resonances was performed by combined application of standard NMR techniques, such as APT, HSQC, HMBC, HSQCTOCSY, COSY and NOESY experiments. The starting thiosulfonates were commercially available (PhSSO₂Ph, MeSSO₂Me) or prepared according to literature (for compound **33** and **34**).^[1] Chemicals were purchased from Fluorochem, Acros, Alfa Aesar or Sigma-Aldrich and used as received. MeLi-LiBr (1.5 M ethereal solution) was titrated immediately prior to use according to literature.^[2]

2. General procedure for the homologation of *S*-thiosulfonate ester to asymmetric dithioacetals (General Procedure 1, GP1)

The *S*-thiosulfonate ester (RSSO₂R, 1.0 equiv) was dissolved in dry THF under Argon and cooled down to -78 °C. Chloroiodomethane (2.0 equiv) was added and, after 5 min, MeLi-LiBr (2.2 M solution in Et₂O, 1.8 equiv) was added *via* syringe pump (rate 0.2 mL/min) and then, the resulting mixture was stirred for 1 h. After increasing the temperature up to 0 °C, a solution of mercaptane (R¹SH, 1.3 equiv) and NaI (0.1 equiv) in dry DMF was added dropwise. Upon reaching room temperature, the reaction mixture was further stirred for 6 h and, subsequently was quenched with aqueous saturated NH₄Cl solution. The resulting organic phase was extracted 3 times with Et₂O, washed with brine, dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. The crude compounds were purified as reported below through column chromatography.

3. Spectral and Characterization Data

1-[(Benzylsulfanyl)methyl]-4-bromobenzene (2)

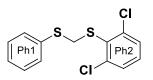

By following general procedure 1, starting from *S*-phenyl benzenesulfonothioate (250 mg, 0.20 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of 4-bromobenzene-1-thiol (246 mg, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **2** was obtained in 93% yield (289 mg) as colourless oil after chromatography on silica gel (90:10 v/v, *n*-hexane/dichloromethane).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.43 (m, 2H, Ph2 H-2,6), 7.41 (m, 2H, Ph1 H-2,6), 7.32 (m, 2H, Ph1 H-3,5), 7.27 (m, 3H, Ph1 H-4, Ph2 H-3,5), 4.31 (s, 2H, SCH₂).

¹³**C NMR** (100 MHz, CDCl₃) δ: 134.6 (Ph1 C-1), 134.0 (Ph2 C-4), 132.3 (Ph2 C-3,5), 132.1 (Ph2 C-2,6), 130.9 (Ph1 C-2,6), 129.1 (Ph1 C-3,5), 127.3 (Ph1 C-4), 121.3 (Ph2 C-1), 40.7 (SCH₂).

HRMS (ESI), *m*/*z*: calcd. for C₁₃H₁₂BrS₂⁺: 292.9994 [M+H]⁺; found: 292.9992.

1-Chloro-4-{[(phenylsulfanyl)methyl]sulfanyl}benzene (3)^[3]

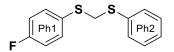

By following general procedure 1, starting from *S*-phenyl benzenesulfonothioate (250 mg, 0.20 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of 4-chlorobenzene-1-thiol (188 mg, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **3** was obtained in 93% yield (248 mg) as colourless oil after chromatography on silica gel (90:10 v/v, *n*-hexane/dichloromethane).

¹H NMR (400 MHz, CDCl₃) δ: 7.42 (m, 2H, Ph1 H-2,6), 7.35 (m, 2H, Ph2 H-3,5), 7.32 (m, 2H, Ph1 H-3,5), 7.28 (m, 2H, Ph2 H-2,6), 7.27 (m, 1H, Ph1 H-4), 4.31 (s, 2H, SCH₂).

¹³**C NMR** (100 MHz, CDCl₃) δ: 134.6 (Ph1 C-1), 133.4 (Ph2 C-1), 133.3 (Ph2 C-4), 132.2 (Ph2 C-3,5), 130.9 (Ph1 C-2,6), 129.1 (Ph2 C-2,6), 129.0 (Ph1 C-3,5), 127.3 (Ph1 C-4), 40.9 (SCH₂).

HRMS (ESI), *m*/*z*: calcd. for C₁₃H₁₂ClS₂⁺: 267.0063 [M+H]⁺; found: 267.0065.

1,3-Dichloro-2-{[(phenylsulfanyl)methyl]sulfanyl}benzene (4)


By following general procedure 1, starting from *S*-phenyl benzenesulfonothioate (250 mg, 0.20 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of 2,6-dichlorobenzene-1-thiol (233 mg, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **4** was obtained in 89% yield (268 mg) as orange solid (m.p.: 55-57 °C) after recrystallization with diethyl ether.

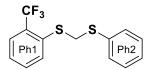
¹**H NMR** (400 MHz, CDCl₃) δ: 7.46 (m, 2H, Ph1 H-2,6), 7.36 (m, 2H, Ph2 H-4,6), 7.29 (m, 2H, Ph1 H-3,5), 7.22 (m, 1H, Ph1 H-4), 7.18 (m, 1H, Ph2 H-5), 4.40 (s, 2H, SCH₂).

¹³**C NMR** (100 MHz, CDCl₃) δ: 141.5 (Ph2 C-1,3), 134.8 (Ph1 C-1), 131.7 (Ph2 C-2), 130.4 (Ph2 C-5), 130.2 (Ph1 C-2,6), 128.9 (Ph1 C-3,5), 128.6 (Ph2 C-4,6), 127.0 (Ph1 C-4), 40.3 (SCH₂).

HRMS (ESI), *m*/*z*: calcd. for C₁₃H₁₁Cl₂S₂⁺: 300.9674 [M+H]⁺; found: 300.9673.

1-Fluoro-4-{[(phenylsulfanyl)methyl]sulfanyl}benzene (5)

By following general procedure 1, starting from *S*-phenyl benzenesulfonothioate (250 mg, 0.20 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of 4-fluorobenzene-1-thiol (167 mg, 0.14 mL, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **5** was obtained in 91% yield (228 mg) as yellow oil after filtration on silica gel.


¹**H NMR** (400 MHz, CDCl₃) δ: 7.44 (m, 2H, Ph1 H-3,5), 7.41 (m, 2H, Ph2 H-2,6), 7.32 (m, 2H, Ph2 H-3,5), 7.26 (m, 1H, Ph2 H-4), 7.01 (m, 2H, Ph1 H-2,6), 4.29 (s, 2H, SCH₂S).

¹³**C NMR** (100 MHz, CDCl₃) δ: 162.5 (d, *J* = 247.9 Hz, Ph1 C-1), 134.8 (Ph2 C-1), 134.2 (d, *J* = 8.2 Hz, Ph1 C-5), 134.1 (d, *J* = 8.2 Hz, Ph1 C-3), 130.7 (Ph2 C-2,6), 129.6 (d, *J* = 3.3 Hz, Ph1 C-4), 129.0 (Ph2 C-3,5), 127.1 (Ph2 C-4), 116.1 (d, *J* = 21.9 Hz, Ph1 C-2,6), 41.9 (d, *J* = 1.2 Hz, SCH₂S).

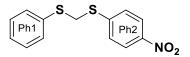
¹⁹**F NMR** (376 MHz, CDCl₃) δ: -113.7 (m, F).

HRMS (ESI), *m*/*z*: calcd. for C₁₃H₁₂FS₂⁺: 251.0359 [M+H]⁺; found: 251.0361.

1-{[(Phenylsulfanyl)methyl]sulfanyl}-2-(trifluoromethyl)benzene (6)

By following general procedure 1, starting from S-phenyl benzenesulfonothioate (250 mg, 0.20 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of 2-

(trifluoromethyl)benzene-1-thiol (232 mg, 0.18 mL, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **6** was obtained in 95% yield (285 mg) as yellow oil after filtration on silica gel.

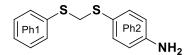

¹H NMR (400 MHz, CDCl₃) δ: 7.68 (m, 1H, Ph1 H-3), 7.63 (m, 1H, Ph1 H-6), 7.50 (m, 1H, Ph1 H-5), 7.45 (m, 2H, Ph2 H-2,6), 7.35 (m, 1H, Ph1 H-4), 7.33 (m, 2H, Ph2 H-3,5), 7.27 (m, 1H, Ph2 H-4), 4.37 (s, 2H, SCH₂S).

¹³**C NMR** (100 MHz, CDCl₃) δ: 134.6 (Ph2 C-1), 134.3 (Ph1 C-1), 133.1 (Ph1 C-6), 132.0 (Ph1 C-5), 130.9 (q, *J* = 30.0 Hz, Ph1 C-2), 130.8 (Ph2 C-2,6), 129.1 (Ph2 C-3,5), 127.3 (Ph2 C-4), 127.1 (Ph1 C-4), 126.9 (q, *J* = 5.6 Hz, Ph1 C-3), 123.6 (q, *J* = 273.8 Hz, CF₃), 40.9 (SCH₂S).

¹⁹F NMR (376 MHz, CDCl₃) δ: -60.5 (s, CF₃).

HRMS (ESI), *m*/*z*: calcd. for C₁₄H₁₂F₃S₂⁺: 301.0327 [M+H]⁺; found: 301.0330.

1-Nitro-4{[(phenylsulfanyl)methyl]sulfanyl}benzene (7)


By following general procedure 1, starting from *S*-phenyl benzenesulfonothioate (250 mg, 0.20 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of 4-nitrobenzene-1-thiol (202 mg, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **7** was obtained in 85% yield (236 mg) as yellow oil after chromatography on silica gel (70:30 v/v, *n*-hexane/dichloromethane).

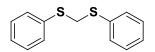
¹**H NMR** (400 MHz, CDCl₃) δ: 8.14 (m, 2H, Ph2 H-2,6), 7.45 (m, 2H, Ph1 H-2,6), 7.41 (m, 2H, Ph2 H-3,5), 7.34 (m, 2H, Ph1 H-3,5), 7.30 (m, Ph1 H-4), 4.43 (s, 2H, SCH₂).

¹³**C NMR** (100 MHz, CDCl₃) δ: 145.7 (Ph2 C-1), 145.4 (Ph2 C-4), 133.7 (Ph1 C-1), 131.5 (Ph1 C-2,6), 129.2 (Ph1 C-3,5), 127.9 (Ph1 C-4), 127.4 (Ph2 C-3,5), 123.9 (Ph2 C-2,6), 38.6 (SCH₂).

HRMS (ESI), *m*/*z*: calcd. for C₁₃H₁₂NO₂S₂⁺: 278.0304 [M+H]⁺; found: 278.0306.

4-{[(Phenylsulfanyl)methyl]sulfanyl}aniline (8)

By following general procedure 1, starting from *S*-phenyl benzenesulfonothioate (250 mg, 0.20 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of 4-aminobenzene-1-thiol (168 mg, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL),

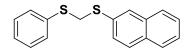

compound **8** was obtained in 88% yield (218 mg) as yellow solid (m.p.: 50 °C) after chromatography on silica gel (70:30 v/v, dichloromethane/*n*-hexane).

¹H NMR (400 MHz, CDCl₃) δ: 7.40 (m, 2H, Ph1 H-2,6), 7.31 (m, 2H, Ph2 H-3,5), 7.30 (m, 2H, Ph1 H-3,5), 7.23 (m, 1H, Ph1 H-4); 6.64 (m, 2H, Ph2 H-2,6), 4.21 (s, 2H, SCH₂), 3.78 (brs, 2H, NH₂).

¹³**C NMR** (100 MHz, CDCl₃) δ: 146.5 (Ph2 C-1), 135.4 (Ph1 C-1), 135.2 (Ph2 C-3,5), 130.2 (Ph1 C-2,6), 128.9 (Ph1 C-3,5), 126.7 (Ph1 C-4), 122.1 (Ph2 C-4), 115.6 (Ph2 C-2,6), 42.8 (SCH₂).

HRMS (ESI), *m*/*z*: calcd. for C₁₃H₁₄NS₂⁺: 248.0562 [M+H]⁺; found: 248.0562.

1,1'-(Methylenedisulfanyldiyl)dibenzene (9)^[4]

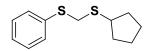

By following general procedure 1, starting from *S*-phenyl benzenesulfonothioate (250 mg, 0.20 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of benzenethiol (143 mg, 0.13 mL, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **9** was obtained in 93% yield (216 mg) as orange oil after filtration on silica gel.

¹H NMR (400 MHz, CDCl₃) δ: 7.43 (m, 4H, Ph H-2,6), 7.32 (m, 4H, Ph H-3,5), 7.25 (m, 2H, Ph H-4), 4.35 (s, 2H, SCH₂).

¹³**C NMR** (100 MHz, CDCl₃) δ: 135.0 (Ph C-1), 130.7 (Ph C-2,6), 129.0 (Ph C-3,5), 127.1 (Ph C-4), 40.6 (SCH₂).

HRMS (ESI), *m*/*z*: calcd. for C₁₃H₁₂NaS₂⁺: 255.0273 [M+Na]⁺; found: 255.0272.

2-{[(Phenylsulfanyl)methyl]sulfanyl}naphthalene (10)

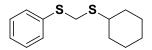

By following general procedure 1, starting from S-phenyl benzenesulfonothioate (250 mg, 0.20 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of naphthalene-2-thiol (208 mg, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **10** was obtained in 95% yield (268 mg) as orange solid (m.p.: 29 °C) after recrystallization with diethyl ether.

¹**H NMR** (400 MHz, CDCl₃) δ: 7.87 (m, 1H, Naph H-1), 7.81 (m, 1H, Naph H-5), 7.78 (m, 1H, Naph H-4), 7.77 (m, 1H, Naph H-8), 7.49 (m, 1H, Naph H-7), 7.48 (m, 1H, Naph H-3), 7.47 (m, 1H, Naph H-6), 7.45 (m, 2H, Ph H-2,6), 7.32 (m, 2H, Ph H-3,5), 7.26 (m, Ph H-4), 4.45 (s, 2H, SCH₂).

¹³**C NMR** (100 MHz, CDCl₃) δ: 134.9 (Ph C-1), 133.6 (Naph C-8a), 132.4 (Naph C-2), 132.2 (Naph C-4a), 130.8 (Ph C-2,6), 129.1 (Naph C-1), 129.0 (Ph C-3,5), 128.6 (Naph C-4), 128.1 (Naph C-3), 127.7 (Naph C-5), 127.4 (Naph C-8), 127.2 (Ph C-4), 126.6 (Naph C-7), 126.1 (Naph C-6), 40.5 (SCH₂).

HRMS (ESI), *m*/*z*: calcd. for C₁₇H₁₄NaS₂⁺: 305.0429 [M+Na]⁺; found: 305.0429.

{[(Cyclopentylsulfanyl)methyl]sulfanyl}benzene (11)

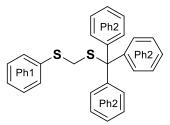

By following general procedure 1, starting from *S*-phenyl benzenesulfonothioate (250 mg, 0.20 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of cyclopentanethiol (133 mg, 0.14 mL, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **11** was obtained in 87% yield (213 mg) as colourless oil after chromatography on silica gel (*n*-hexane).

¹H NMR (400 MHz, CDCl₃) δ: 7.42 (m, 2H, Ph H-2,6), 7.31 (m, 2H, Ph H-3,5), 7.23 (m, Ph H-4), 4.05 (s, 2H, SCH₂), 3.37 (m, 1H, Cyclopent H-1), 2.03 (m, 2H, Cyclopent H-2,5), 1.74 (m, 2H, Cyclopent H-3,4), 1.59 (m, 2H, Cyclopent H-3,4), 1.56 (m, 2H, Cyclopent H-2,5).

¹³**C NMR** (100 MHz, CDCl₃) δ: 135.7 (Ph C-1), 130.2 (Ph C-2,6), 128.9 (Ph C-3,5), 126.7 (Ph C-4), 43.7 (Cyclopent C-1), 37.8 (SCH₂), 33.4 (Cyclopent C-2,5), 24.8 (Cyclopent C-3,4).

HRMS (ESI), *m*/*z*: calcd. for C₁₂H₁₆NaS₂⁺: 247.0586 [M+Na]⁺; found: 247.0587.

{[(Cyclohexylsulfanyl)methyl]sulfanyl}benzene (12)^[5]

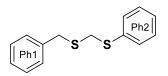

By following general procedure 1, starting from *S*-phenyl benzenesulfonothioate (250 mg, 0.20 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of cyclohexanethiol (151 mg, 0.16 mL, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **12** was obtained in 85% yield (203 mg) as colourless oil after chromatography on silica gel (95:05 v/v, *n*-hexane/dichloromethane).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.42 (m, 2H, Ph H-2,6), 7.31 (m, 2H, Ph H-3,5), 7.23 (m, 1H, Ph H-4), 4.05 (s, 2H, SCH₂), 2.93 (m, 1H, Cyclohex H-1), 1.99 (m, 2H, Cyclohex H-2,6), 1.77 (m, 2H, Cyclohex H-3,5), 1.62 (m, 1H, Cyclohex H-4), 1.36 (m, 2H, Cyclohex H-2,6), 1.31 (m, 2H, Cyclohex H-3,5), 1.30 (m, H, Cyclohex H-4).

¹³**C NMR** (100 MHz, CDCl₃) δ: 135.8 (Ph C-1), 130.2 (Ph C-2,6), 128.9 (Ph C-3,5), 126.8 (Ph C-4), 43.3 (Cyclohex C-1), 36.1 (SCH₂), 33.2 (Cyclohex C-2,6), 26.0 (Cyclohex C-3,5), 25.8 (Cyclohex C-4).

HRMS (ESI), *m*/*z*: calcd. for C₁₃H₁₉S₂⁺: 239.0923 [M+H]⁺; found: 239.0925.

1,1',1''-({[(Phenylsulfanyl)methyl]sulfanyl}methanetriyl)tribenzene (13)

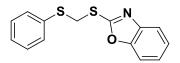

By following general procedure 1, starting from *S*-phenyl benzenesulfonothioate (250 mg, 0.20 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of triphenylmethanethiol (359 mg, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **13** was obtained in 96% yield (383 mg) as white solid (m.p.: 100 °C) after chromatography on silica gel (85:15 v/v, *n*-hexane/dichloromethane).

¹H NMR (400 MHz, CDCl₃) δ: 7.41 (m, 6H, Ph2 H-2,6), 7.33-7.22 (m, 5H, Ph1 H-2,3,4,5,6), 7.30 (m, 6H, Ph2 H-3,5), 7.24 (m, 3H, Ph H-4), 3.55 (s, 2H, SCH₂).

¹³**C NMR** (100 MHz, CDCl₃) δ: 144.2 (Ph2 C-1), 134.9 (Ph1 C-1), 130.1 (Ph1 C-2,6), 129.5 (Ph2 C-2,6), 128.8 (Ph1 C-3,5), 128.0 (Ph2 C-3,5), 126.80 (Ph1 C-4), 126.76 (Ph2 C-4), 68.0 (SC(Ph)₃), 36.5 (SCH₂).

HRMS (ESI), *m*/*z*: calcd. for C₂₆H₂₂NaS₂⁺: 421.1055 [M+Na]⁺; found: 421.1057.

{[(Benzylsulfanyl)methyl]sulfanyl}benzene (14)^[6]

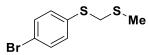

By following general procedure 1, starting from *S*-phenyl benzenesulfonothioate (250 mg, 0.20 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of phenylmethanethiol (180 mg, 0.17 mL,1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **14** was obtained in 91% (224 mg) as a colorless oil after chromatography on silica gel (95:05 v/v, *n*-hexane/dichloromethane).

¹**H NMR** (400 MHz, CDCl3) δ: 7.41 (m, 2H, Ph2 H-2,6), 7.32 (m, 6H, Ph2 H-3,5, Ph1 H-2,3,5,6), 7.25 (m, 2H, Ph2 H-4, Ph1 H-4), 3.88 (s, 2H, CH₂S), 3.85 (s, 2H, SCH₂S).

¹³**C NMR** (100 MHz, CDCl3) δ: 137.4 (Ph1 C-1), 135.0 (Ph2 C-1), 130.6 (Ph2 C-2,6), 129.1 (Ph1 C-2,6), 129.0 (Ph2 C-3,5), 128.6 (Ph1 C-3,5), 127.2 (Ph2 C-4), 127.0 (Ph1 C-4), 36.8 (SCH₂S), 35.0 (CH₂S).

HRMS (ESI), *m*/*z*: calcd. for C₁₄H₁₅S₂⁺: 247.0610 [M+H]⁺; found: 247.0612.

2-{[(Phenylsulfanyl)methyl]sulfanyl}-1,3-benzoxazole (15)

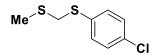

By following general procedure 1, starting from *S*-phenyl benzenesulfonothioate (250 mg, 0.20 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of 1,3-benzoxazole-2-thiol (197 mg, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **15** was obtained in 86% yield (235 mg) as white solid (m.p.: 54 °C) after chromatography on silica gel (80:20 v/v, *n*-hexane/dichloromethane).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.62 (m, 1H, Benzox H-4), 7.51 (m, 2H, Ph H-2,6), 7.43 (m, 1H, Benzox H-7), 7.33 (m, 2H, Ph H-3,5), 7.29 (m, 1H, Benzox H-5), 7.27 (m, 1H, Ph H-4), 7.25 (m, 1H, Benzox H-6), 4.77 (s, 2H, SCH₂).

¹³**C NMR** (100 MHz, CDCl₃) δ: 163.4 (Benzox C-2), 151.9 (Benzox C-7a), 141.8 (Benzox C-3a), 133.7 (Ph C-1), 131.5 (Ph C-2,6), 129.2 (Ph C-3,5), 127.9 (Ph C-4), 124.4 (Benzox C-5), 124.1 (Benzox C-6), 118.7 (Benzox C-4), 110.0 (Benzox C-7). 38.6 (SCH₂).

HRMS (ESI), *m*/*z*: calcd. for C₁₄H₁₁NNaOS₂⁺: 296.0174 [M+Na]⁺; found:296.0174

1-Bromo-4-{[(methylsulfanyl)methyl]sulfanyl}benzene (16)^[7]


By following general procedure 1, starting from *S*-methyl methanesulfonothioate (126 mg, 0.11 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of 4-bromobenzene-1-thiol (246 mg, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **16** was obtained in 95% yield (237 mg) as yellow oil after filtration on silica gel.

¹H NMR (400 MHz, CDCl₃) δ: 7.43 (m, 2H, Ph H-2,6), 7.29 (m, 2H, Ph H-3,5), 3.97 (s, 2H, SCH₂S), 2.22 (s, 3H, SCH₃).

¹³**C NMR** (100 MHz, CDCl₃) δ: 134.2 (Ph C-4), 132.2 (Ph C-3,5), 132.0 (Ph C-2,6), 121.0 (Ph C-1), 40.4 (SCH₂S), 15.1 (SCH₃).

HRMS (ESI), *m*/*z*: calcd. for C₈H₁₀BrS₂⁺: 248.9402 [M+H]⁺; found: 248.9405.

1-Chloro-4-{[(methylsulfanyl)methyl]sulfanyl}benzene (17)^[8]

By following general procedure 1, starting from *S*-methyl methanesulfonothioate (126 mg, 0.11 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of 4-chlorobenzene-1-thiol (188 mg, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **17** was obtained in 93% yield (190 mg) as yellow oil after filtration on silica gel.

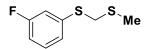

¹H NMR (400 MHz, CDCl₃) δ: 7.36 (m, 2H, Ph H-3,5), 7.29 (m, 2H, Ph H-2,6), 3.97 (s, 2H, SCH₂), 2.22 (s, 3H, CH₃S).

 $^{13}\textbf{C}$ NMR (100 MHz, CDCl_3) δ : 133.5 (Ph C-4), 133.2 (Ph C-1), 132.1 (Ph C-3,5), 129.1 (Ph C-2,6),

40.7 (SCH₂), 15.1 (CH₃S).

HRMS (ESI), *m*/*z*: calcd. for C₈H₁₀CIS₂⁺: 204.9907 [M+H]⁺; found: 204.9905.

1,3-Dichloro-2-{[(methylsulfanyl)methyl]sulfanyl}benzene (18)


By following general procedure 1, starting from *S*-methyl methanesulfonothioate (126 mg, 0.11 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of 2,6-dichlorobenzene-1-thiol (233 mg, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **18** was obtained in 91% yield (218 mg) as yellow oil after filtration on silica gel.

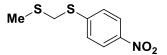
¹H NMR (400 MHz, CDCl₃) δ: 7.39 (m, 2H, Ph H-4,6), 7.21 (m, 1H, Ph H-5), 4.04 (s, 2H, SCH₂), 2.30 (s, 3H, SCH₃).

¹³C NMR (100 MHz, CDCl₃) δ: 141.6 (Ph C-1,3), 131.9 (Ph C-2), 130.3 (Ph C-5), 128.6 (Ph C-4,6), 41.1 (SCH₂), 15.6 (CH₃S).

HRMS (ESI), *m*/*z*: calcd. for C₈H₉Cl₂S₂⁺: 238.9517 [M+H]⁺; found: 238.9518.

1-Fluoro-3-{[(methylsulfanyl)methyl]sulfanyl}benzene (19)

By following general procedure 1, starting from *S*-methyl methanesulfonothioate (126 mg, 0.11 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of 3-fluorobenzene-1-thiol (167 mg, 0.14 mL, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **19** was obtained in 94% yield (177 mg) as brown oil after filtration on silica gel.


¹**H NMR** (400 MHz, CDCl₃) δ: 7.27 (m, 1H, Ph H-5), 7.17 (m, 1H, Ph H-4), 7.13 (m, 1H, Ph H-2), 6.92 (m, 1H, Ph H-6), 4.01 (s, 2H, SCH₂S), 2.24 (s, 3H, SCH₃).

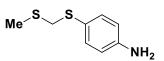
¹³**C NMR** (100 MHz, CDCl₃) δ: 162.7 (d, *J* = 248.4 Hz, Ph C-1), 137.6 (d, *J* = 7.8 Hz, Ph C-3), 130.1 (d, *J* = 8.5 Hz, Ph C-5), 125.4 (d, *J* = 3.0 Hz, Ph C-4), 116.7 (d, *J* = 23.0 Hz, Ph C-2), 113.7 (d, *J* = 21.2 Hz, Ph C-6), 39.8 (SCH₂S), 15.2 (SCH₃).

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -112.0 (m, F).

HRMS (ESI), *m*/*z*: calcd. for C₈H₁₀FS₂⁺: 189.0202 [M+H]⁺; found: 189.0201.

1-{[(Methylsulfanyl)methyl]sulfanyl}-4-nitrobenzene (20)

By following general procedure 1, starting from *S*-methyl methanesulfonothioate (126 mg, 0.11 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of 4-nitrobenzene-1-thiol (202 mg, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **20** was obtained in 85% yield (183 mg) as orange oil after filtration on silica gel.

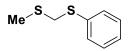

¹H NMR (400 MHz, CDCl₃) δ: 8.16 (m, 2H, Ph H-3,5), 7.43 (m, 2H, Ph H-2,6), 4.11 (s, 2H, SCH₂), 2.26 (s, 3H, CH₃S).

 ^{13}C NMR (100 MHz, CDCl_3) δ : 145.7 (Ph C-1), 127.5 (Ph C-2,6), 123.9 (Ph C-3,5), 38.0 (SCH_2), 15.4 (CH_3S).

¹⁵N NMR (40MHz, CDCl₃) δ: -12.8 (NO₂).

HRMS (ESI), *m*/*z*: calcd. for C₈H₁₀NO₂S₂⁺: 216.0147 [M+H]⁺; found: 216.0149.

4-{[(Methylsulfanyl)methyl]sulfanyl}aniline (21)

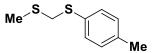

By following general procedure 1, starting from *S*-methyl methanesulfonothioate (126 mg, 0.11 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of 4-aminobenzene-1-thiol (168 mg, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **21** was obtained in 87% yield (161 mg) as brown oil after chromatography on silica gel (70:30 v/v, dichloromethane/*n*-hexane).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.31 (m, 2H, Ph H-3,5), 6.64 (m, 2H, Ph H-2,6), 4.20-3.20 (brs, 2H, NH₂), 3.84 (s, 2H, SCH₂), 2.20 (s, 3H, CH₃S).

¹³**C NMR** (100 MHz, CDCl₃) δ: 146.5 (Ph C-1), 135.1 (Ph C-3,5), 122.1 (Ph C-4), 115.5 (Ph C-2,6), 43.0 (SCH₂), 15.0 (CH₃S).

HRMS (ESI), *m*/*z*: calcd. for C₈H₁₂NS₂⁺: 186.0406 [M+H]⁺; found: 186.0408.

{[(Methylsulfanyl)methyl]sulfanyl}benzene (22)^[9]

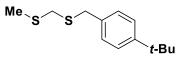

By following general procedure 1, starting from *S*-methyl methanesulfonothioate (126 mg, 0.11 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of benzenethiol (143 mg, 0.13 mL, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **22** was obtained in 96% yield (163 mg) as light yellow oil after filtration on silica gel.

¹**H NMR** (400 MHz, CDCl₃) δ: 7.43 (m, 2H, Ph H-2,6), 7.32 (m, 2H, Ph H-3,5), 7.25 (m, 1H, Ph H-4), 4.01 (s, 2H, SCH₂), 2.23 (s, 3H, SCH₃).

¹³**C NMR** (100 MHz, CDCl₃) δ: 135.1 (Ph C-1), 130.6 (Ph C-2,6), 128.9 (Ph C-3,5), 127.0 (Ph C-4), 40.4 (SCH₂), 15.2 (CH₃S).

HRMS (ESI), *m*/*z*: calcd. for C₈H₁₀NaS₂⁺: 193.0116 [M+Na]⁺; found: 193.0117.

1-Methyl-4-{[(methylsulfanyl)methyl]sulfanyl}benzene (23)^[8]


By following general procedure 1, starting from *S*-methyl methanesulfonothioate (126 mg, 0.11 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of 4-methylbenzene-1-thiol (162 mg, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **23** was obtained in 94% yield (173 mg) as yellow oil after filtration on silica gel.

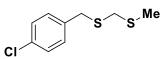
¹H NMR (400 MHz, CDCl₃) δ: 7.35 (m, 2H, Ph H-3,5), 7.14 (m, 2H, Ph H-2,6), 3.96 (s, 2H, SCH₂), 2.34 (s, 3H, CH₃), 2.22 (s, 3H, CH₃S).

¹³**C NMR** (100 MHz, CDCl₃) δ: 137.3 (Ph C-1), 131.5 (Ph C-3,5), 131.2 (Ph C-4), 129.7 (Ph C-2,6), 41.2 (SCH₂), 21.1 (CH₃), 15.1 (CH₃S).

HRMS (ESI), *m*/*z*: calcd. for C₉H₁₃S₂⁺: 185.0453 [M+H]⁺; found: 185.0456.

1-(2-Methyl-2-propanyl)-4-({[(methylsulfanyl)methyl]sulfanyl}methyl)benzene (24)

By following general procedure 1, starting from S-methyl methanesulfonothioate (126 mg, 0.11 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of (4-*tert*-butylphenyl)methanethiol (234 mg, 0.24 mL, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1

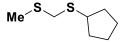

equiv) in dry DMF (3 mL), compound **24** was obtained in 89% yield (214 mg) as yellow oil after chromatography on silica gel (90:10 v/v, *n*-hexane/dichloromethane).

¹H NMR (400 MHz, CDCl₃) δ: 7.34 (m, 2H, Ph H-2,6), 7.26 (m, 2H, Ph H-3,5), 3.80 (s, 2H, CH₂S), 3.52 (s, 2H, SCH₂S), 2.18 (s, 3H, SCH₃), 1.32 (s, 9H, C(CH₃)₃).

¹³**C NMR** (100 MHz, CDCl₃) δ: 149.9(Ph C-1), 134.5 (Ph C-4), 128.7 (Ph C-3,5), 125.4 (Ph C-2,6), 36.8 (SCH₂S), 34.5 (<u>C</u>(CH₃)₃), 33.7 (CH₂S), 31.3 (C(<u>C</u>H₃)₃) 14.4 (SCH₃).

HRMS (ESI), *m*/*z*: calcd. for C₁₃H₂₁S₂⁺: 241.1079 [M+H]⁺; found: 241.1078.

1-Chloro-4-({[(methylsulfanyl)methyl]sulfanyl}methyl)benzene (25)

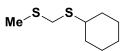

By following general procedure 1, starting from S-methyl methanesulfonothioate (126 mg, 0.11 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of (4-chlorophenyl)methanethiol (206 mg, 0.17 mL, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **25** was obtained in 87% yield (190 mg) as colourless oil after chromatography on silica gel (80:20 v/v, *n*-hexane/dichloromethane).

¹H NMR (400 MHz, CDCl₃) δ: 7.28 (m, 4H, Ph H-2,3,5,6), 3.78 (s, 2H, CH₂S), 3.47 (s, 2H, SCH₂S), 2.16 (s, 3H, SCH₃).

¹³**C NMR** (100 MHz, CDCl₃) δ: 136.2 (Ph C-4), 132.8 (Ph C-1), 130.4 (Ph C-3,5), 128.6 (Ph C-2,6), 36.6 (SCH₂S), 33.4 (CH₂S), 14.3 (SCH₃).

HRMS (ESI), *m*/*z*: calcd. for C₉H₁₂ClS₂⁺: 219.0063 [M+H]⁺; found: 219.0060.

{[(Methylsulfanyl)methyl]sulfanyl}cyclopentane (26)

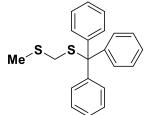

By following general procedure 1, starting from S-methyl methanesulfonothioate (126 mg, 0.11 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of cyclopentanethiol (133 mg, 0.14 mL, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **26** was obtained in 83% yield (135mg) as colourless oil after chromatography on silica gel (*n*-hexane).

¹H NMR (400 MHz, CDCl₃) δ: 3.66 (s, 2H, SCH₂), 3.30 (m, 1H, Cyclopent H-1), 2.19 (s, 3H, CH₃S), 2.02 (m, 2H, Cyclopent H-2,5), 1.74 (m, 2H, Cyclopent H-3,4), 1.59 (m, 2H, Cyclopent H-3,4).1.55 (m, 2H, Cyclopent H-2,5).

¹³C NMR (100 MHz, CDCl₃) δ: 42.9 (Cyclopent C-1), 37.7 (SCH₂), 33.4 (Cyclopent C-2,5), 24.8 (Cyclopent C-3,4), 14.8 (CH₃S).

HRMS (ESI), *m*/*z*: calcd. for C₇H₁₅S₂⁺: 163.0610 [M+H]⁺; found: 163.0608.

{[(Methylsulfanyl)methyl]sulfanyl}cyclohexane (27)


By following general procedure 1, starting from *S*-methyl methanesulfonothioate (126 mg, 0.11 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of cyclohexanethiol (151 mg, 0.16 mL, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **27** was obtained in 88% yield (155 mg) as colourless oil after chromatography on silica gel (95:05 v/v, *n*-hexane/dichloromethane).

¹**H NMR** (400 MHz, CDCl₃) δ: 3.67 (s, 2H, SCH₂), 2.87 (m, 1H, Cyclohex H-1), 2.18 (s, 3H, CH₃S), 1.97 (m, 2H, Cyclohex H-2,6), 1.77 (m, 2H, Cyclohex H-3,5), 1.61 (m, 1H, Cyclohex H-4), 1.37 (m, 2H, Cyclohex H-2,6), 1.31 (m, 2H, Cyclohex H-3,5), 1.28 (m, 1H, Cyclohex H-4).

¹³C NMR (100 MHz, CDCl₃) δ: 42.4 (Cyclohex C-1), 36.0 (SCH₂), 33.2 (Cyclohex C-2,6), 26.0 (Cyclohex C-3,5), 25.8 (Cyclohex C-4), 14.7 (CH₃S).

HRMS (ESI), *m*/*z*: calcd. for C₈H₁₆NaS₂⁺: 199.0586 [M+Na]⁺; found:199.0587.

1,1',1''-({[(Methylsulfanyl)methyl]sulfanyl}methanetriyl)tribenzene (28)

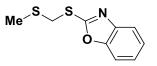
By following general procedure 1, starting from *S*-methyl methanesulfonothioate (126 mg, 0.11 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of triphenylmethanethiol (359 mg, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **28** was obtained in 91% yield (306 mg) as white solid (m.p.: 83 °C) after chromatography on silica gel (70:30 v/v, *n*-hexane/dichloromethane).

¹H NMR (400 MHz, CDCl₃) δ: 7.42 (m, 6H, Ph H-2,6), 7.29 (m, 6H, Ph H-3,5), 7.22 (m, 3H, Ph H-4), 3.17 (s, 2H, SCH₂), 2.10 (s, 3H, CH₃S).

¹³C NMR (100 MHz, CDCl₃) δ: 144.4 (Ph C-1), 129.5 (Ph C-2,6), 128.0 (Ph C-3,5), 126.8 (Ph C-4), 67.7 (SC(Ph)₃), 36.4 (SCH₂), 15.7 (CH₃S).

HRMS (ESI), *m*/*z*: calcd. for C₂₁H₂₀NaS₂⁺: 359.0899 [M+Na]⁺; found: 359.0898

1-{[(Methylsulfanyl)methyl]sulfanyl}adamantane (29)

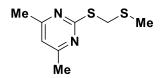

By following general procedure 1, starting from S-methyl methanesulfonothioate (126 mg, 0.11 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of adamantane-1-thiol (219 mg, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **29** was obtained in 87% yield (199 mg) as yellow oil after chromatography on silica gel (90:10 v/v, *n*-hexane/dichloromethane).

¹H NMR (400 MHz, CDCl₃) δ: 3.61 (s, 2H, SCH₂), 2.14 (s, 3H, CH₃S), 1.99 (m, 3H, Adam H-3,5,7), 1.86 (m, 6H, Adam H-2,8,9), 1.63 (m, 6H, Adam H-4,6,10).

¹³C NMR (100 MHz, CDCl₃) δ: 45.4 (Adam C-1), 43.3 (Adam C-2,8,9), 36.1 (Adam C-4,6,10), 31.6 (SCH₂), 29.5 (Adam C-3,5,7), 15.2 (CH₃S).

HRMS (ESI), *m*/*z*: calcd. for C₁₂H₂₀NaS₂⁺: 251.0899 [M+Na]⁺; found:251.0901.

2-{[(Methylsulfanyl)methyl]sulfanyl}-1,3-benzoxazole (30)

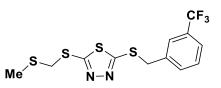

By following general procedure 1, starting from S-methyl methanesulfonothioate (126 mg, 0.11 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of 1,3-benzoxazole-2-thiol (197 mg, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **30** was obtained in 85% yield (180 mg) as colourless oil after chromatography on silica gel (94:06 v/v, *n*-hexane/ethyl acetate).

¹H NMR (400 MHz, CDCl₃) δ: 7.62 (m, 1H, Benzox H-4), 7.45 (m, 1H, Benzox H-7), 7.29 (m, 1H, Benzox H-5), 7.26 (m, 1H, Benzox H-6), 4.47 (s, 2H, SCH₂), 2.30 (s, 3H, CH₃S).

¹³**C NMR** (100 MHz, CDCl₃) δ: 163.7 (Benzox C-2), 151.9 (Benzox C-7a), 141.8 (Benzox C-3a), 124.4 (Benzox C-5), 124.1 (Benzox C-6), 118.6 (Benzox C-4), 110.0 (Benzox C-7), 38.3 (SCH₂), 15.8 (CH₃S).

HRMS (ESI), *m*/*z*: calcd. for C₉H₉NNaOS₂⁺: 234.0018 [M+Na]⁺; found: 234.0021.

4,6-Dimethyl-2-{[(methylsulfanyl)methyl]sulfanyl}pyrimidine (31)


By following general procedure 1, starting from *S*-methyl methanesulfonothioate (126 mg, 0.11 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of 4,6-dimethylpyrimidine-2-thiol (182 mg, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **31** was obtained in 91% yield (182 mg) as colourless oil after filtration on silica gel.

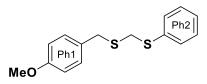
¹H NMR (400 MHz, CDCl₃) δ: 6.71 (s, 1H, Pyr H-5), 4.33 (s, 2H, SCH₂S), 2.40 (s, 6H, CH₃), 2.24 (s, 3H, SCH₃).

¹³**C NMR** (100 MHz, CDCl₃) δ: 169.9 (Pyr C-2), 167.1 (Pyr C-4,6), 116.0 (Pyr C-5), 36.3 (SCH₂S), 23.8 (CH₃), 15.4 (SCH₃).

HRMS (ESI), *m*/*z*: calcd. for C₈H₁₃N₂S₂⁺: 201.0515 [M+H]⁺; found: 201.0517.

2-{[(Methylsulfanyl)methyl]sulfanyl}-5-{[3-(trifluoromethyl)benzyl]sulfanyl}-1,3,4-thiadiazole (32)

By following general procedure 1, starting from S-methyl methanesulfonothioate (126 mg, 0.11 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of 5-({[3-(trifluoromethyl)phenyl]methyl}sulfanyl)-1,3,4-thiadiazole-2-thiol (401 mg, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **32** was obtained in 95% yield (320 mg) as yellow oil after filtration on silica gel.

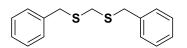

¹**H NMR** (400 MHz, CDCl₃) δ: 7.66 (brs, 1H, Ph H-2), 7.63 (brd, *J* = 7.7 Hz, 1H, Ph H-6), 7.54 (brd, *J* = 7.7 Hz, 1H, Ph H-4), 7.45 (m, 1H, Ph H-5), 4.57 (s, 2H, SCH₂), 4.36 (s, 2H, SCH₂S), 2.27 (s, 3H, CH₃S).

¹³**C NMR** (100 MHz, CDCl₃) δ: 164.5 (Thiadiaz C-5), 164.3 (Thiadiaz C-2), 137.1 (Ph C-1), 132.6 (q, J = 1.3 Hz, Ph C-6), 131.1 (q, J = 32.4 Hz, Ph C-3), 129.2 (Ph C-5), 125.9 (q, J = 3.8 Hz, Ph C-2), 124.7 (q, J = 3.8 Hz, Ph C-4), 123.8 (q, J = 272.4, CF₃), 40.3 (SCH₂S), 37.5 (SCH₂), 15.7 (CH₃S).

¹⁹**F NMR** (376 MHz, CDCl₃) δ: -62.7 (s, CF₃).

HRMS (ESI), *m*/*z*: calcd. for C₁₂H₁₂F₃N₂S₄⁺: 368.9830 [M+H]⁺; found: 368.9834.

1-Methoxy-4-({[(phenylsulfanyl)methyl]sulfanyl}methyl)benzene (33)

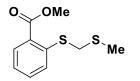

By following general procedure 1, starting from *S*-[(4-methoxyphenyl)methyl] 4-methylbenzene-1sulfonothioate (308 mg, 0.20 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of benzenethiol (143 mg, 0.13 mL, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **33** was obtained in 92% yield (254 mg) as pink oil after chromatography on silica gel (70:30 v/v, *n*-hexane/dichloromethane).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.42 (m, 2H, Ph2 H-2,6), 7.32 (m, 2H, Ph2 H-3,5), 7.25 (m, 1H, Ph2 H-4), 7.24 (m, 2H, Ph1 H-3,5),6.85 (m, 2H, Ph1 H-2,6), 3.86 (s, 2H, SCH₂S), 3.85 (s, 2H, CH₂S), 3.80 (s, 3H, OCH₃).

¹³**C NMR** (100 MHz, CDCl₃) δ: 158.7 (Ph1 C-1), 135.2 (Ph2 C-1), 130.5 (Ph2 C-2,6), 130.2 (Ph1 C-3,5), 129.2 (Ph1 C-4, Ph2 C-3,5), 126.9 (Ph2 C-4), 113.9 (Ph1 C-2,6), 55.2 (OCH₃), 36.6 (SCH₂S), 34.4 (CH₂S).

HRMS (ESI), *m*/*z*: calcd. for C₁₅H₁₇OS₂⁺: 277.0715 [M+H]⁺; found: 277.0716.

1,1'-[Methylenebis(sulfanedimethylene)]dibenzene (34)^[6]

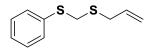

By following general procedure 1, starting from *S*-benzyl phenylmethanesulfonothioate (278 mg, 0.22 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of phenylmethanethiol (180 mg, 0.17 mL,1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **34** was obtained in 89% (232 mg) as a white solid (m.p.: 54 °C, lit. 55 °C) after chromatography on silica gel (95:05 v/v, *n*-hexane/dichloromethane).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.31 (m, 8H, Ph H-2,3,5,6), 7.25 (m, 2H, Ph H-4), 3.84 (s, 4H, PhCH₂S), 3.38 (s, 2H, SCH₂S).

¹³**C NMR** (100 MHz, CDCl₃) δ: 137.7 (Ph C-1), 129.1 (Ph C-2,6), 128.5 (Ph C-3,5), 127.0 (Ph C-4), 34.4 (PhCH₂S), 33.4 (SCH₂S).

HRMS (ESI), *m*/*z*: calcd. for C₁₅H₁₇S₂⁺: 261.0766 [M+H]⁺; found: 261.0764.

Methyl 2-{[(methylsulfanyl)methyl]sulfanyl}benzoate (35)


By following general procedure 1, starting from *S*-methyl methanesulfonothioate (126 mg, 0.11 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of methyl 2-sulfanylbenzoate (219 mg, 0.18 mL, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **35** was obtained in 95% yield (274 mg) as yellow oil after filtration on silica gel.

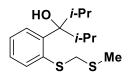
¹**H NMR** (400 MHz, CDCl₃) δ: 7.96 (m, 1H, Ph H-6), 7.47 (m, 1H, Ph H-4), 7.44 (m, 1H, Ph H-3), 7.20 (m, 1H, Ph H-5), 4.02 (s, 2H, SCH₂S), 3.91 (s, 3H, OCH₃), 2.26 (s, 3H, SCH₃).

¹³**C NMR** (100 MHz, CDCl₃) δ: 166.8 (C=O), 140.3 (Ph C-2), 132.3 (Ph C-4), 131.2 (Ph C-6), 128.3 (Ph C-1), 126.6 (Ph C-3), 124.5 (Ph C-5), 52.1 (OCH₃), 37.6 (SCH₂S), 15.6 (SCH₃).

HRMS (ESI), *m*/*z*: calcd. for C₁₀H₁₃O₂S₂⁺: 229.0351 [M+H]⁺; found: 229.0348.

({[(Prop-2-en-1-yl)sulfanyl]methyl}sulfanyl)benzene (36)^[10]

By following general procedure 1, starting from *S*-phenyl benzenesulfonothioate (250 mg, 0.20 mL, 1.0 mmol, 1.0 equiv), ClCH₂I (353 mg, 0.15 mL, 2.0 mmol, 2.0 equiv), MeLi-LiBr complex (0.8 mL of 2.2 M in Et₂O, 1.8 mmol, 1.8 equiv) in THF (5 mL), followed by the addition of prop-2-ene-1-thiol (96 mg, 0.11 mL, 1.3 mmol, 1.3 equiv) and NaI (15 mg, 0.1 mmol, 0.1 equiv) in dry DMF (3 mL), compound **36** was obtained in 87% yield (171 mg) as yellow oil after chromatography on silica gel (80:20 v/v, *n*-hexane/dichloromethane).

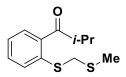

¹**H NMR** (200 MHz, CDCl₃) δ: 7.45 (m, 2H, Ph H-2,6), 7.33 (m, 3H, Ph H-3,4,5), 5.79 (m, 1H, CH₂C<u>H</u>=CH₂), 5.15 (m, 2H, CH₂CH=CH₂), 3.99 (s, 2H, SCH₂S), 3.33 (m, 2H, C<u>H</u>₂CH=CH₂).

¹³**C NMR** (50 MHz, CDCl₃) δ: 135.1 (Ph C-1), 133.1 (CH₂<u>C</u>H=CH₂), 130.6 (Ph C-2,6), 128.9 (Ph C-3,5), 126.9 (Ph C-4), 118.1 (CH₂CH=<u>C</u>H₂), 36.3 (SCH₂S), 33.6 (<u>C</u>H₂CH=CH₂).

HRMS (ESI), *m*/*z*: calcd. for C₁₀H₁₃S₂⁺: 197.0453 [M+H]⁺; found: 197.0457.

4. Applications

2,4-Dimethyl-3-(2-{[(methylsulfanyl)methyl]sulfanyl}phenyl)-3-pentanol (37)

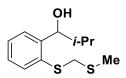

Methyl 2-{[(methylsulfanyl)methyl]sulfanyl}benzoate (228 mg, 1.0 mmol, 1.0 equiv)) was solubilized in dry 2-MeTHF (5 mL) under Argon atmosphere and *i*-PrMgCl (1.0 mL of 2.0 M in THF, 2.0 mmol, 2.0 equiv) wad added dropwise and the reaction was carried out at 0 °C for 1 hour. Subsequently it was quenched with aqueous saturated NH₄Cl solution. The resulting organic phase was extracted 3 times with Et₂O, washed with brine, dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. Compound **37** was obtained in 87% yield (248 mg) as colourless oil after chromatography on silica gel (90:10 v/v, *n*-hexane/ethyl acetate).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.49 (m, 1H, Ph H-3), 7.25 (m, 2H, Ph H-5,6), 7.19 (m, 1H, Ph-4), 5.41 (brs, 1H, OH), 3.98 (s, 2H, SCH₂S), 2.36 (brs, 2H, C<u>H</u>(CH₃)₂), 2.24 (s, 3H, SCH₃), 0.91 (d, J = 6.7 Hz, 6H, CH(C<u>H₃)₂), 0.80 (d, J = 6.8 Hz, 6H, CH(C<u>H₃)₂).</u></u>

¹³**C NMR** (100 MHz, CDCl₃) δ: 143.4 (br, Ph C-1), 136.8 (br, Ph C-3), 133.1 (Ph C-2), 128.8 (Ph C-6), 127.2 (Ph C-5), 126.7 (Ph C-4), 85.0 (CHOH), 43.6 (br, SCH₂S), 35.6 (br, <u>C</u>H(CH₃)₂), 18.1 (CH(<u>C</u>H₃)₂), 16.8 (CH(<u>C</u>H₃)₂), 15.8 (SCH₃).

HRMS (ESI), *m*/*z*: calcd. for C₁₈H₂₅OS₂⁺: 285.1341 [M+H]⁺; found: 285.1338.

2-Methyl-1-(2-{[(methylsulfanyl)methyl]sulfanyl}phenyl)-1-propanone (38)


Methyl 2-{[(methylsulfanyl)methyl]sulfanyl}benzoate (228 mg, 1.0 mmol, 1.0 equiv)) was solubilized in dry CPME (5 mL) under Argon atmosphere and *N*-methoxymethanamine hydrogen chloride (195 mg, 2.0 mmol, 2.0 equiv)) was added at 0 °C. After that *i*-PrMgCl (0.9 mL of 2.0 M in THF, 1.8 mmol, 1.8 equiv) wad added dropwise and the reaction was carried out at 0 °C to room temperature for 2 hours. Subsequently, additional *i*-PrMgCl (0.65 mL of 2.0 M in THF, 1.3 mmol, 1.3 equiv) was added and, the resulting mixture was allowed to react for 1 h before it was quenched with aqueous saturated NH₄Cl solution. The resulting organic phase was extracted 3 times with Et₂O, washed with brine, dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. Compound **38** was obtained in 85% yield (204 mg) as colourless oil after chromatography on silica gel (90:10 v/v, *n*-hexane/ethyl acetate).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.62 (m, 1H, Ph H-6), 7.52 (m, 1H, Ph H-3), 7.44 (m, 1H, Ph-4), 7.26 (m, 1H, Ph H-5), 3.98 (s, 2H, SCH₂S), 3.43 (sept, J = 6.9 Hz, 1H, C<u>H(CH₃)₂), 2.22 (s, 3H, SCH₃), 1.20 (d, J = 6.9 Hz, 6H, CH(C<u>H₃)₂).</u></u>

¹³**C NMR** (100 MHz, CDCl₃) δ: 207.0 (C=O), 138.4 (Ph C-1), 137.2 (Ph C-2), 131.2 (Ph C-4), 129.2 (Ph C-3), 128.8 (Ph C-6), 125.4 (Ph C-5), 39.2 (SCH₂S), 38.1 (<u>C</u>H(CH₃)₂), 18.7 (CH(<u>C</u>H₃)₂), 15.5 (SCH₃).

HRMS (ESI), *m*/*z*: calcd. for C₁₂H₁₇OS₂⁺: 241.0715 [M+H]⁺; found: 241.07119.

2-Methyl-1-(2-{[(methylsulfanyl)methyl]sulfanyl}phenyl)-1-propanol (39)

2-Methyl-1-(2-{[(methylsulfanyl)methyl]sulfanyl}phenyl)-1-propanone (240 mg, 1.0 mmol, 1.0 equiv)) was solubilized in AcOEt (5 mL) and NaBH₄ (76 mg, 2.0 mmol, 2.0 equiv) wad added and the reaction was carried out at 0 °C for 2 hours. Subsequently it was quenched with aqueous saturated NH₄Cl solution. The resulting organic phase was extracted 3 times with Et₂O, washed with brine, dried over anhydrous Na₂SO₄ and concentrated *in vacuo*. C

ompound **39** was obtained in 93% yield (225 mg) as colourless oil after chromatography on silica gel (90:10 v/v, *n*-hexane/ethyl acetate).

¹**H NMR** (400 MHz, CDCl₃) δ: 7.47 (m, 2H, Ph H-3,6), 7.29 (m, 1H, Ph H), 7.24 (m, 1H, Ph H), 4.96 (d, J = 6.9 Hz, 1H, C<u>H</u>OH), 3.95 (A-part of an AB-system, ² $J_{AB} = 13.3$ Hz, 1H, SCH₂S), 3.92 (B-part of an AB-system, ² $J_{AB} = 13.3$ Hz, 1H, SCH₂S), 2.22 (s, 3H, SCH₃), 2.22 (brs, 1H, OH), 2.02 (m, 1H, C<u>H</u>(CH₃)₂), 1.02 (d, J = 6.6 Hz, 3H, CH(C<u>H₃)₂</u>), 0.83 (d, J = 6.9 Hz, 3H, CH(C<u>H₃)₂</u>).

¹³**C NMR** (100 MHz, CDCl₃) δ: 145.5 (Ph C-1), 133.0 (Ph C-2), 131.9 (Ph C-3), 127.7 (Ph C-4), 127.6 (Ph C-5), 127.0 (Ph C-6), 76.0 (CHOH), 41.7 (SCH₂S), 34.5 (<u>C</u>H(CH₃)₂), 19.4 (CH(<u>C</u>H₃)₂), 15.4 (SCH₃).

HRMS (ESI), *m*/*z*: calcd. for C₁₂H₁₉OS₂⁺: 243.0872 [M+H]⁺; found: 243.0875.

5. X-Ray Analysis of Compound 10, 15 and 28

The X-ray intensity data were measured on Bruker D8 Venture diffractometer equipped with multilayer monochromator, Mo K/ α INCOATEC micro focus sealed tube and Oxford cooling system. The structures were solved by *Direct Methods*. Non-hydrogen atoms were refined with *anisotropic displacement parameters*. Hydrogen atoms were inserted at calculated positions and refined with riding model. The following software was used: *Bruker SAINT software package*^[11] using a narrow-frame algorithm for frame integration, *SADABS*^[12] for absorption correction, *OLEX2*^[13] for structure solution, refinement, molecular diagrams and graphical user-interface, *Shelxle*^[14] for refinement and graphical user-interface *SHELXS-2015*^[15] for structure solution, *SHELXL-2015*^[15] for refinement, *Platon*^[16] for symmetry check. Experimental data and CCDC-Codes Experimental data (Available online: <u>http://www.ccdc.cam.ac.uk/conts/retrieving.html</u>) can be found in Table 1. Crystal data, data collection parameters, and structure refinement details are given in Tables 2 to 9. Asymmetric Unit visualized in Figures 1 to 4. Samples for X-ray analysis were recrystallized from ethanol.

Sample	Machine	Source	Temp.	Detector Distance	Time/ Frame	#Frames	Frame width	CCDC
	Bruker		[K]	[mm]	[s]		[°]	
10	D8	Мо	100	30	8	1050	0.300	2016505
15	D8	Мо	100	30	60	1853	0.300	2016506
28	D8	Мо	100	30	15	1864	0.300	2016507

Table 1 Experimental parameter and CCDC-Code.

2-{[(Phenylsulfanyl)methyl]sulfanyl}naphthalene

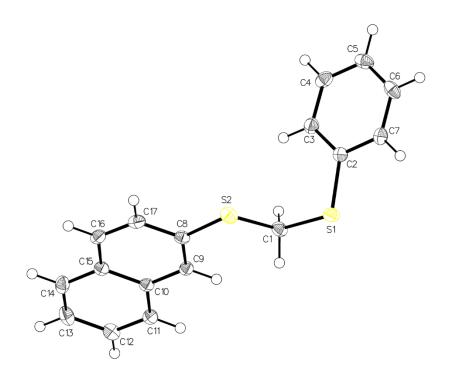


Figure 1 Crystal structure, drawn with 50% displacement ellipsoid. The bond precision for C-C single bonds is 0.0030Å.

Radiation [Å]	ΜοΚα (λ = 0.71073)	Z	4	Measurement method	\f and \w scans
Crystal habit	clear colourless stick	a [Å]	14.9903(9)		
Crystal size [mm ³]	0.1 × 0.05 × 0.02	b [Å]	5.9477(4)	Abs. correction type	multiscan
Empirical formula	C17H14S2	c [Å]	16.5251(15)	Abs. correction Tmin	0.6474
Formula weight [g/mol]	282.40	α [°]	90	Abs. correction Tmax	0.7460
Temperature [K]	100.0	β [°]	110.467(4)	Density (calculated) [g/cm ³]	1.359
Crystal system	monoclinic	γ [°]	90	Absorption coefficient [mm ⁻¹]	0.368
Space group	P21/c	Volume [Å ³]	1380.33(18)	F (000) [e ⁻]	592.0

Table 2 Sample and crystal data. [10]

Table 3 Data collection and structure refinement. [10] Image: Table 3 Data collection and structure refinement

20 range for data collection [°]	5.042 to 50.696	Index ranges		Goodness-of-fit on F ²	1.052
Reflections collected	12148	h	-18 ≤ h ≤ 17	Diff. peak and hole [e ⁻ Å- ³]	0.24/-0.26
Data / restraints / parameters	2513/0/0172	k	-6 ≤ k ≤ 7		
Refinement method	Direct Methods	I	-19 ≤ ≤ 19	Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$
		all data	R1 = 0.0414, wR2 = 0.0776	Weighting scheme	where
		l>2σ(l)	R1 = 0.0324, wR2 = 0.0722	w=1/[σ ² (Fo ²) + (0.0257P) ² +0.8649P]	P=(F _o ² +2F _c ²)/3

2-{[(Phenylsulfanyl)methyl]sulfanyl}-1,3-benzoxazole

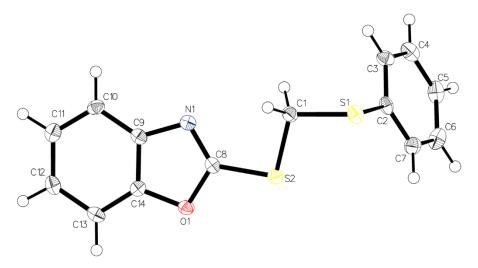


Figure 2 Crystal structure, drawn with 50% displacement ellipsoid. The bond precision for C-C single bonds is 0.0038Å.

Radiation [Å]	ΜοΚα (λ = 0.71073)	Z	2	Measurement method	\f and \w scans
Crystal habit	clear colourless block	a [Å]	9.5155(11)		
Crystal size [mm ³]	0.045 × 0.04 × 0.03	b [Å]	4.8412(4)	Abs. correction type	multiscan
Empirical formula	C14H11NOS2	c [Å]	13.9736(18)	Abs. correction Tmin	0.7062
Formula weight [g/mol]	273.36	α [°]	90	Abs. correction Tmax	0.7460
Temperature [K]	100.0	β [°]	96.436(5)	Density (calculated) [g/cm ³]	1.419
Crystal system	monoclinic	γ [°]	90	Absorption coefficient [mm ⁻¹]	0.401
Space group	P21	Volume [Å ³]	639.66(12)	F (000) [e ⁻]	284.0

Table 4 Sample and crystal data. [15]

Table 5 Data collection and structure refinement. [15]

20 range for data collection [°]	4.932 to 60.168	Index ranges		Goodness-of-fit on F ²	1.148
Reflections collected	15673	h	-13 ≤ h ≤ 13	Diff. peak and hole [e ⁻ Å ⁻³]	0.30/-0.28
Data / restraints / parameters	3715/1/163	k	-6 ≤ k ≤ 6		
Refinement method	Direct Methods	I	-19 ≤ ≤ 19	Function minimized	$\Sigma w (F_0^2 - F_c^2)^2$
		all data	R1 = 0.0423, wR2 = 0.0680	Weighting scheme	where
		l>2σ(l)	R1 = 0.0303, wR2 = 0.0555	w=1/[$\sigma^2(Fo^2)$ + (0.0109P) ² +0.3131P]	$P=(F_o^2+2F_c^2)/3$

$1,1^{'},1^{''}-(\{[(Methylsulfanyl)methyl]sulfanyl\}methanetriyl)tribenzene$

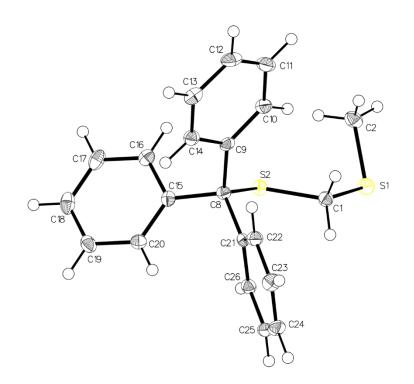


Figure 3 Crystal structure, drawn with 50% displacement ellipsoid. The bond precision for C-C single bonds is 0.0022Å.

Table 6 Sample and Crystal data. [28]							
Radiation [Å]	ΜοΚα (λ = 0.71073)	Z	4	Measurement method	\f and \w scans		
Crystal habit	clear colourless block	a [Å]	16.4219(5)				
Crystal size [mm ³]	0.1 × 0.05 × 0.03	b [Å]	7.1899(2)	Abs. correction type	multiscan		
Empirical formula	C21H20S2	c [Å]	16.4782(7)	Abs. correction Tmin	0.6709		
Formula weight [g/mol]	336.49	α [°]	90	Abs. correction Tmax	0.7460		
Temperature [K]	100.0	β [°]	118.3742(10)	Density (calculated) [g/cm ³]	1.306		
Crystal system	monoclinic	γ [°]	90	Absorption coefficient [mm ⁻¹]	0.308		
Space group	P21/n	Volume [Å ³]	1711.87(10)	F (000) [e ⁻]	712.0		

Table 6 Sample and crystal data. [28]

Table 7 Data collection and structure refinement. [28]

20 range for data collection [°]		In	dex ranges	Goodness-of-fit on F ²	1.069
20 range for data concetion []	1.00110.0017	index ranges			1.005
Reflections collected	32414	h	-19 ≤ h ≤ 19	Diff. peak and hole [e ⁻ Å- ³]	0.29/-0.25
Data / restraints / parameters	3136/0/209	k	-8 ≤ k ≤ 8		
Refinement method	Direct Methods	I	-19 ≤ ≤ 19	Function minimized	$\Sigma w (F_o^2 - F_c^2)^2$
		all data	R1 = 0.0335,	Weighting scheme	where
			wR2 = 0.0732		
		l>2σ(l)	R1 = 0.0287, wR2 = 0.0702	$w=1/[\sigma^2(Fo^2) + (0.0270P)^2 + 1.2512P]$	$P=(F_o^2+2F_c^2)/3$

 Table 8
 The main characteristic of the common backbone (C2-S1-C1-S2-C8) is the difference in the two C-S bonds. All three compounds show smaller values on C1-S1.

	C1-S1	C1-S2	\$1- \$ 2	S2-C1-S1	C2-S1	C8-S2
10	1.795 Å	1.814 Å	2.943 Å	109.249	1.774 Å	1.766 Å
15	1.801 Å	1.819 Å	2.932 Å	108.179	1.782 Å	1.735 Å
28	1.804 Å	1.816 Å	2.945 Å	105.846	1.803 Å	1.863 Å

6. References

[1] M. Musiejuk, J. Doroszuk, B. Jędrzejewski, G. Ortiz Nieto, M. Marin Navarro, D. Witt, Adv. Synth. Catal. 2020, 362, 618-626.

[2] J. Suffert, J. Org. Chem. 1989, 54, 509-510.

[3] K. Kobayashi, M. Kawakita, H. Akamatsu, O. Morikawa, H. Konishi, *B Chem Soc Jpn* **1996**, *69*, 2645-2647.

[4] Z. G. Guo, B. Zhang, X. H. Wei, C. J. Xi, Org Lett 2018, 20, 6678-6681.

[5] C. Silva-Cuevas, E. Paleo, D. F. Leon-Rayo, J. A. Lujan-Montelongo, Rsc Adv 2018, 8, 24654-24659.

[6] V. Pace, A. Pelosi, D. Antermite, O. Rosati, M. Curini, W. Holzer, Chem Commun 2016, 52, 2639-2642.

[7] J. L. Wardell, D. W. Grant, J Organomet Chem 1980, 198, 121-129.

[8] P. G. Gassman, T. Miura, Tetrahedron Lett 1981, 22, 4787-4790.

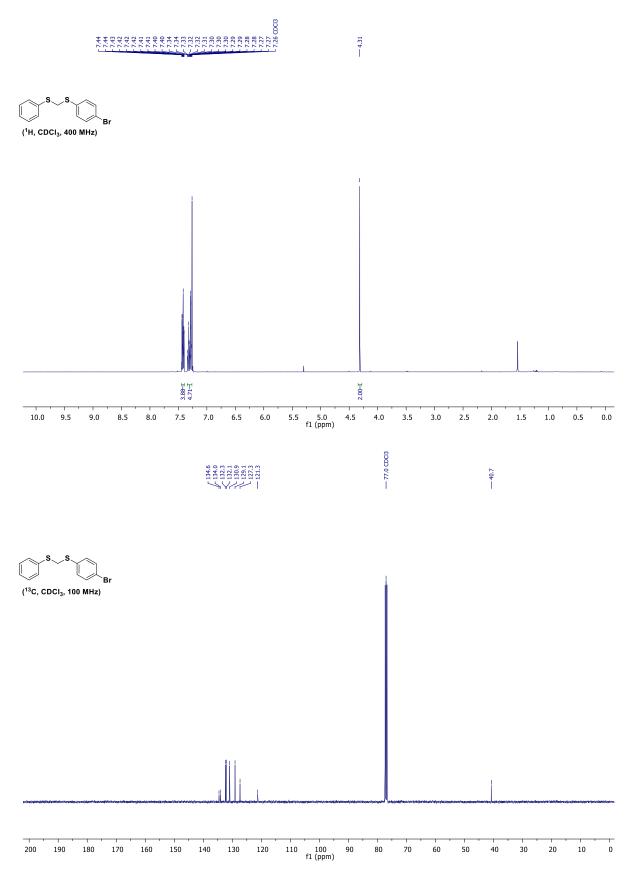
[9] J. H. Zaidi, F. Naeem, K. M. Khan, R. Iqbal, Z. Ullah, Synthetic Commun 2004, 34, 2641-2653.

[10] C. Huynh, V. Ratovelomanana, S. Julia, *B Soc Chim Fr li-Ch* **1977**, 710-716.

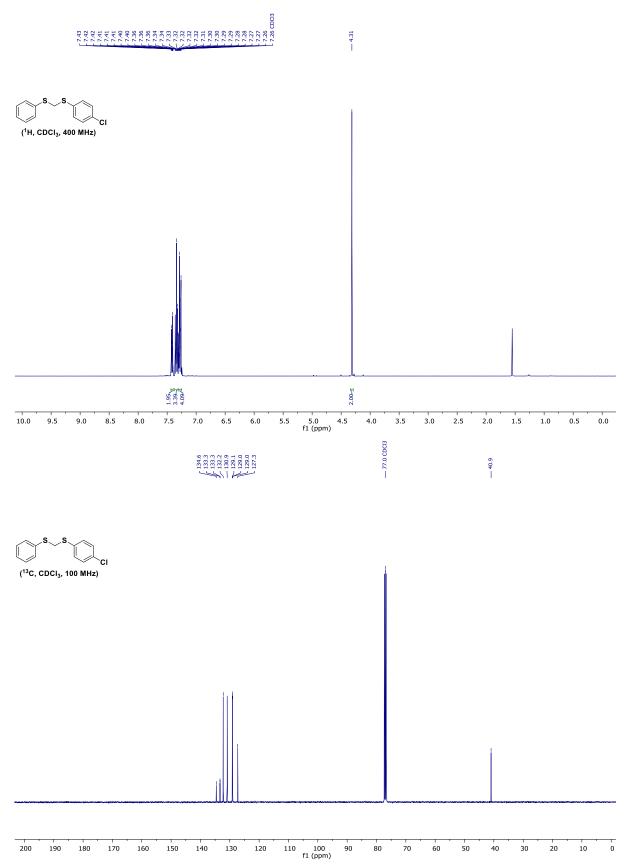
[11] Bruker SAINT v8.38B Copyright $\ensuremath{\mathbb{C}}$ 2005-2019 Bruker AXS.

[12] G. M. Sheldrick, **1996**, SHELXS. University of Göttingen, Germany.

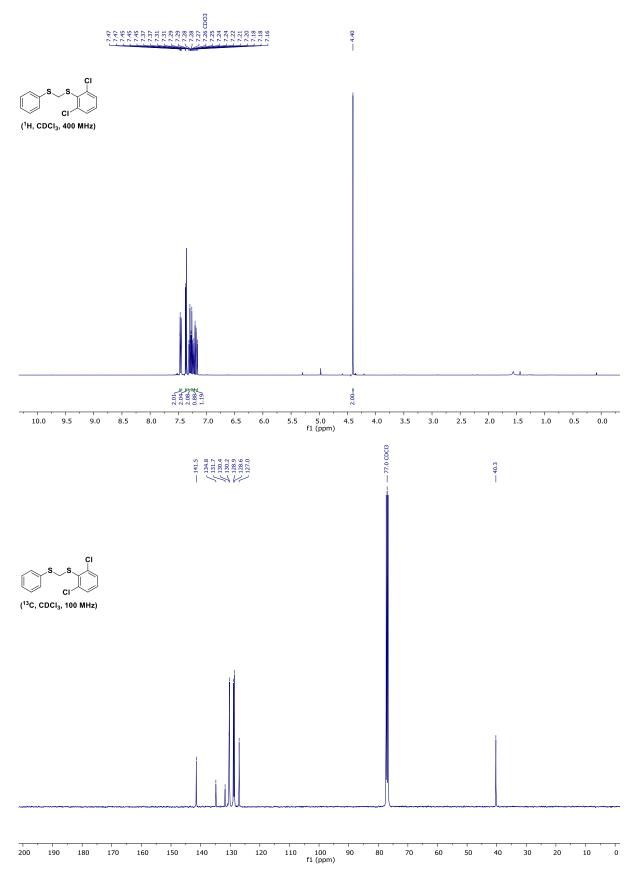
[13] O. V. Dolomanov, L. J. Bourhis, R. J. Gildea, J. A. K. Howard, H. Puschmann, *Journal of Applied Crystallography* **2009**, *42*, 339-341.

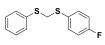

[14] C. B. Hübschle, G. M. Sheldrick, B. Dittrich, Journal of Applied Crystallography 2011, 44, 1281-1284.

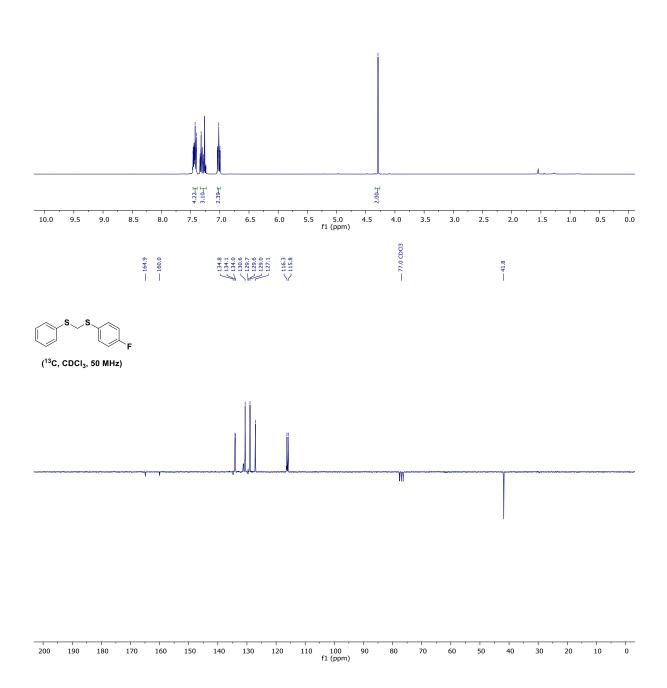
[15] G. M. Sheldrick, Acta Cryst. 2015, C71, 3-8.


[16] A. Spek, Acta Cryst. D **2009**, 65, 148-155.

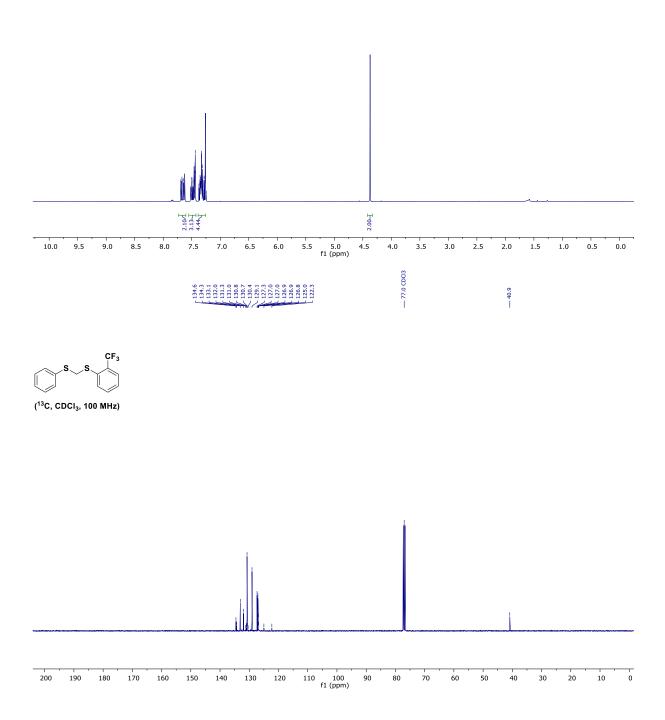
7. Copies of ¹H- and ¹³C-NMR Spectra for all the compounds

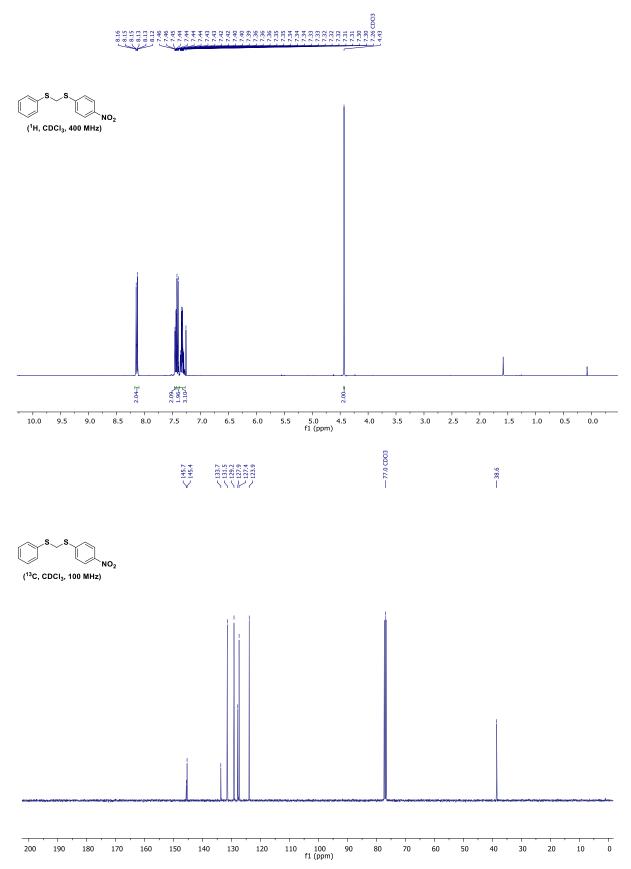

1-[(Benzylsulfanyl)methyl]-4-bromobenzene (2)

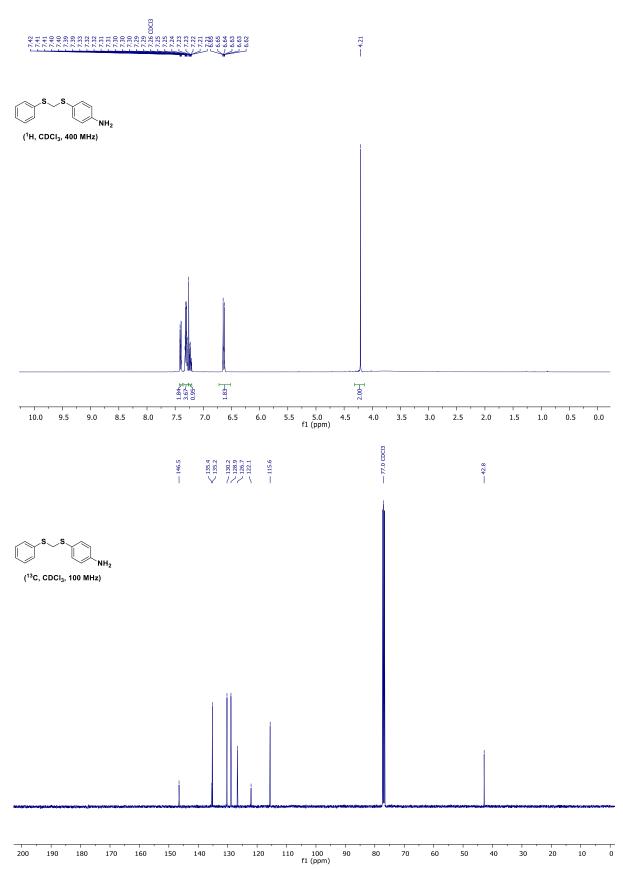

1-Chloro-4-{[(phenylsulfanyl)methyl]sulfanyl}benzene (3)

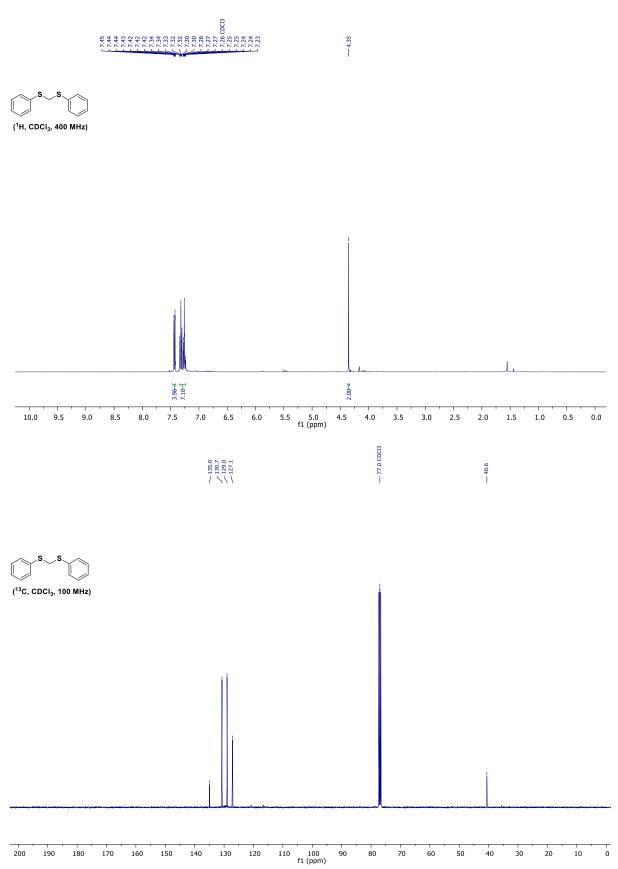

1,3-Dichloro-2-{[(phenylsulfanyl)methyl]sulfanyl}benzene (4)

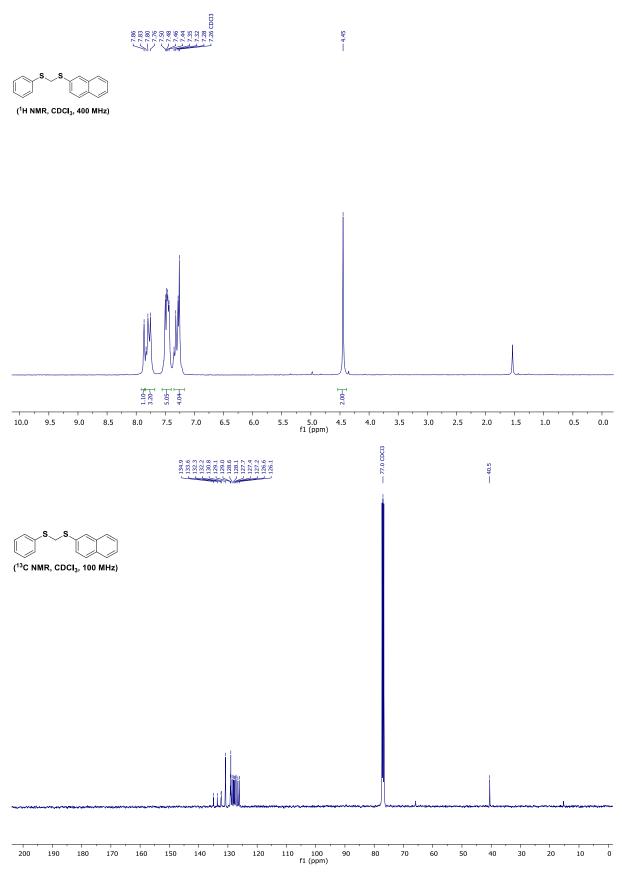
1-Fluoro-4-{[(phenylsulfanyl)methyl]sulfanyl}benzene (5)

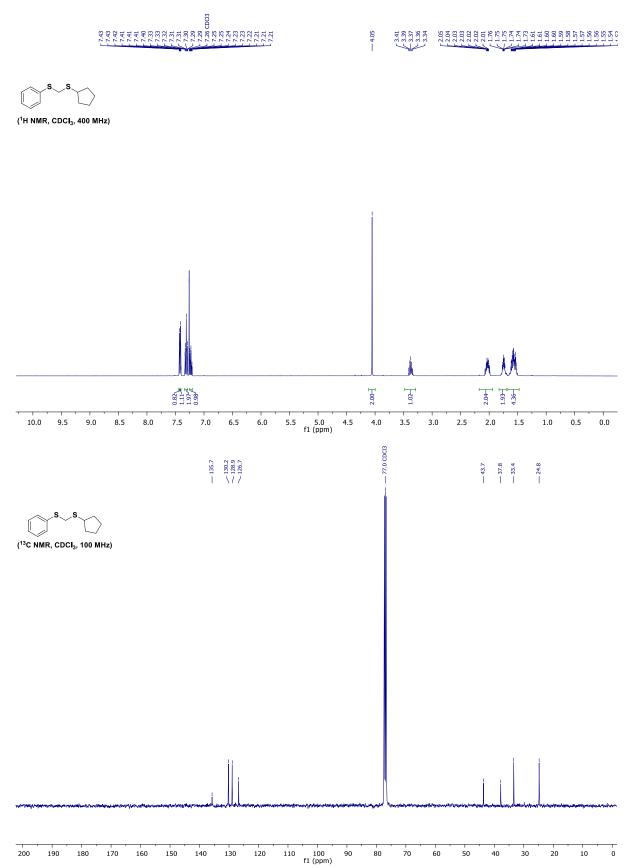

(¹H, CDCI₃, 400 MHz)

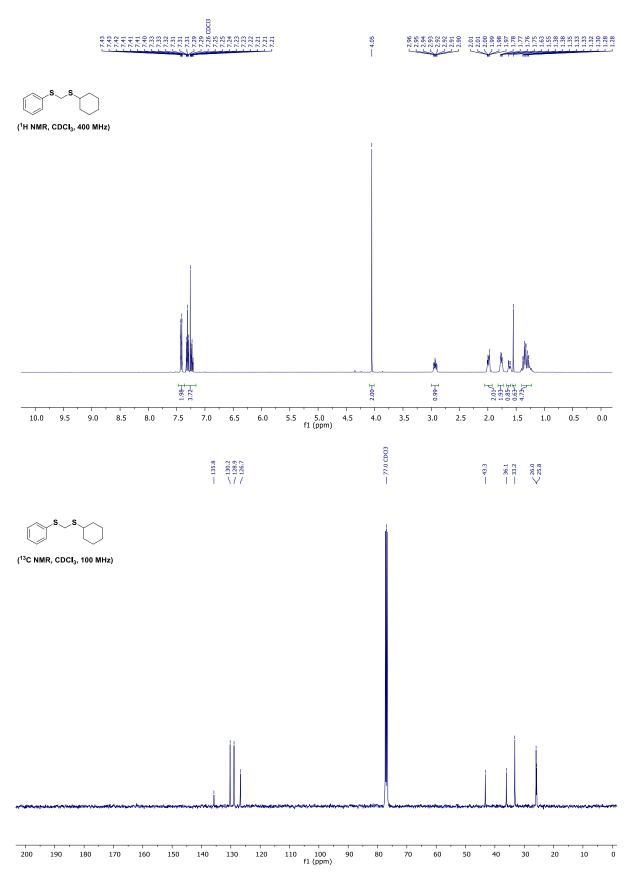

1-{[(Phenylsulfanyl)methyl]sulfanyl}-2-(trifluoromethyl)benzene (6)

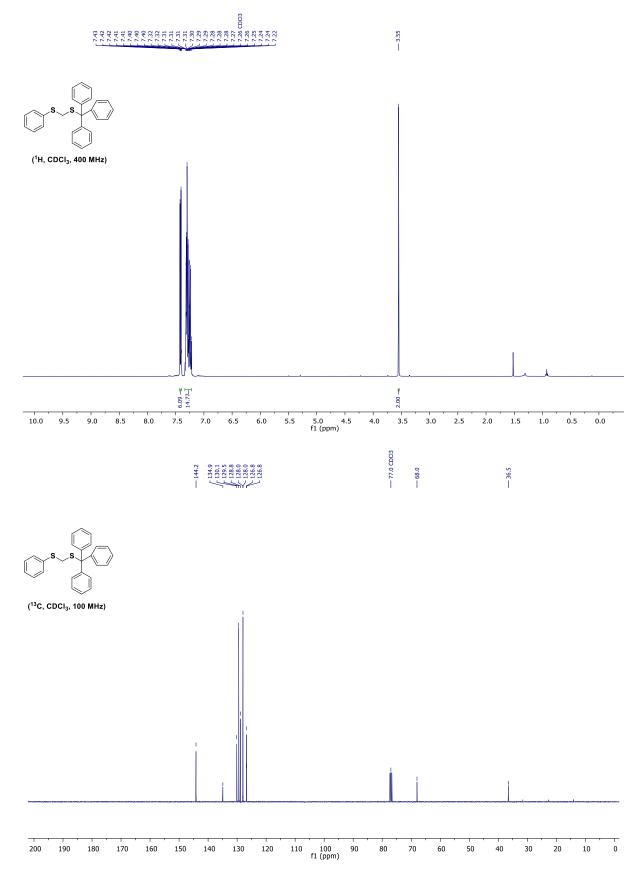

(¹H, CDCI₃, 400 MHz)


1-Nitro-4-{[(phenylsulfanyl)methyl]sulfanyl}benzene (7)

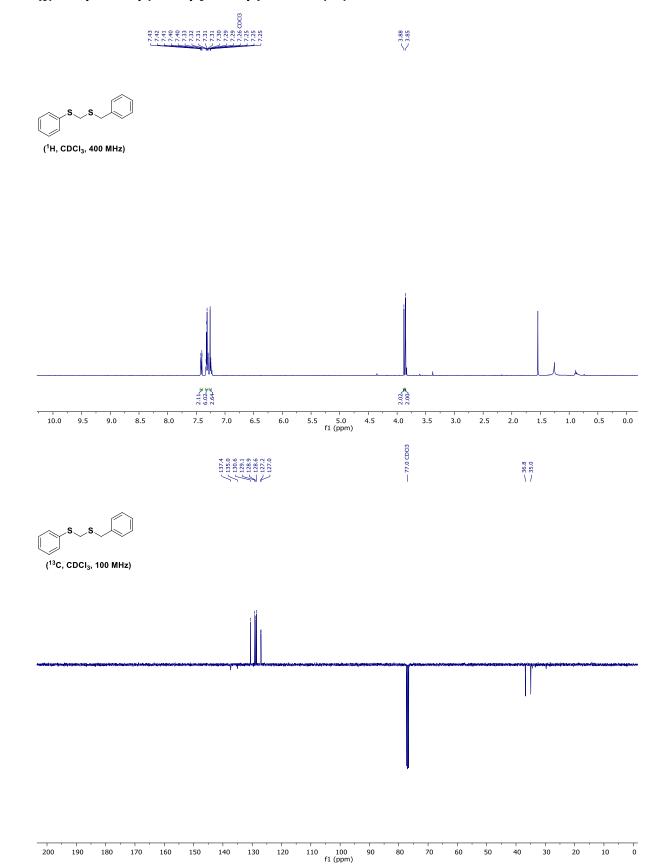

4-{[(Phenylsulfanyl)methyl]sulfanyl}aniline (8)

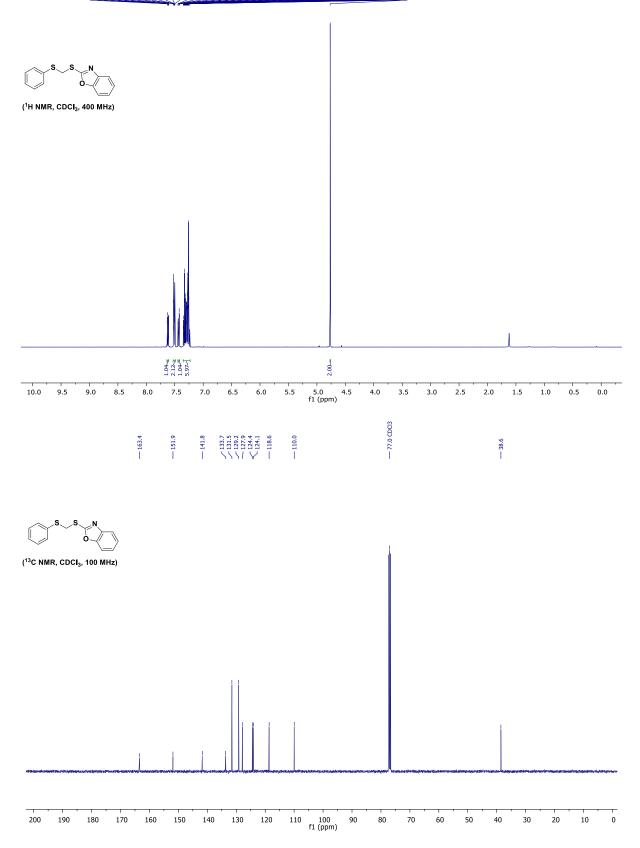

1,1'(Methylenedisulfanyldiyl)dibenzene (9)


2-{[(Phenylsulfanyl)methyl]sulfanyl}naphthalene (10)

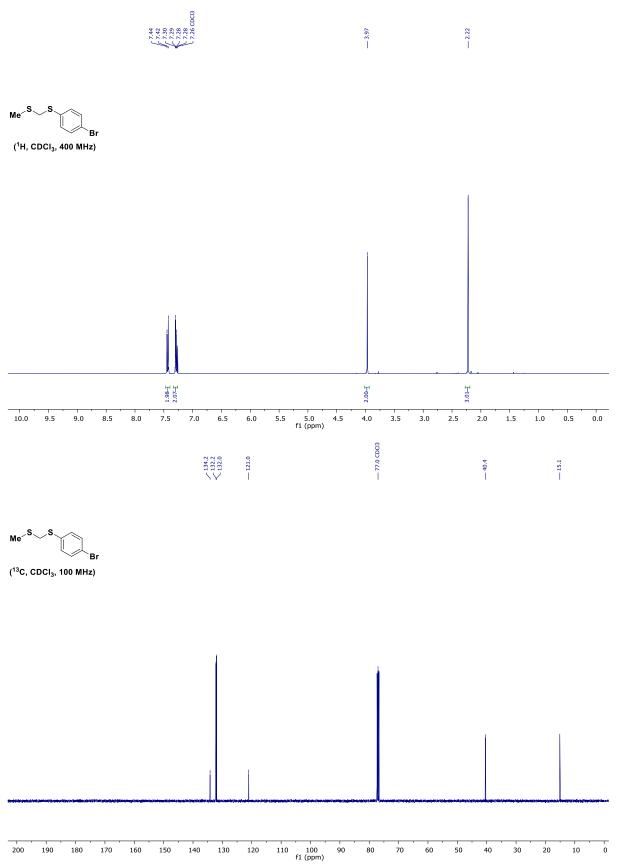


{[(Cyclopentylsulfanyl)methyl]sulfanyl}benzene (11)

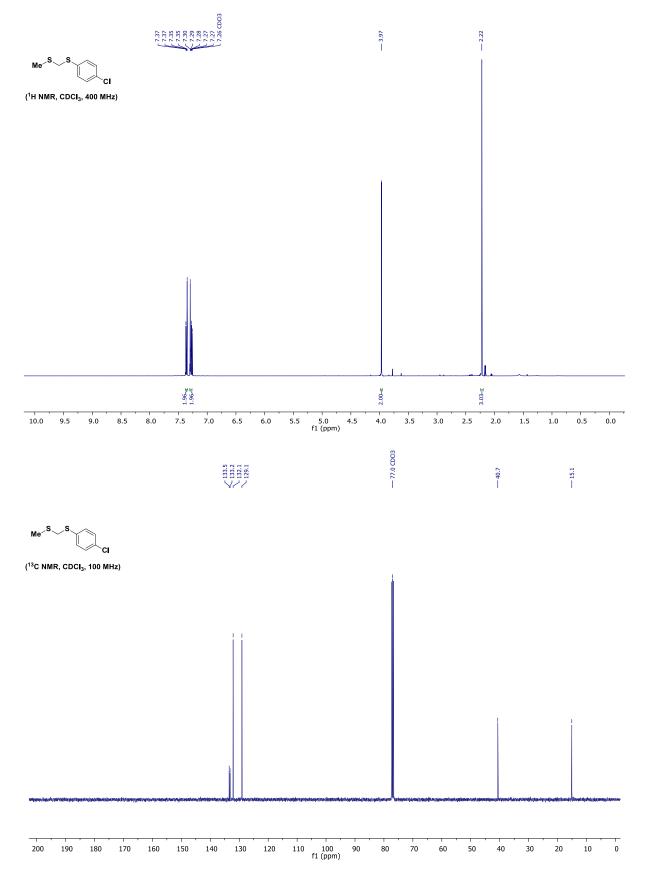

{[(Cyclohexylsulfanyl)methyl]sulfanyl}benzene (12)

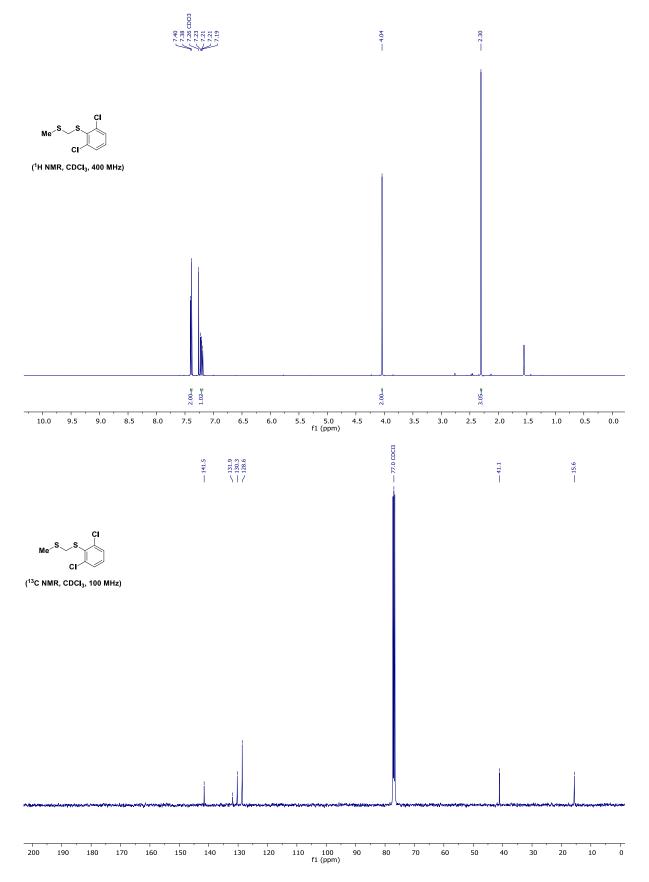

1,1´,1´´-({[(Phenylsulfanyl)methyl]sulfanyl}methanetriyl)tribenzene (13)

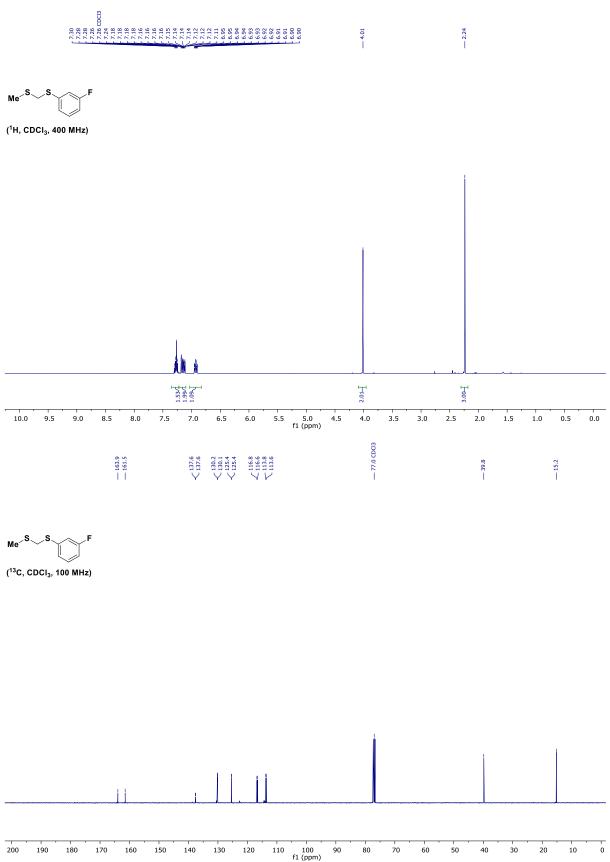
{[(Benzylsulfanyl)methyl]sulfanyl}benzene (14)

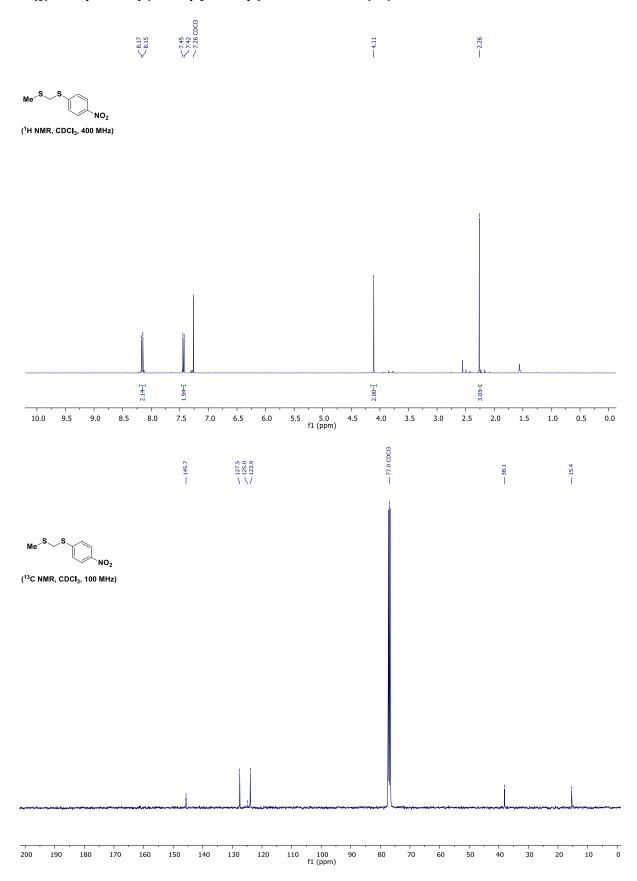


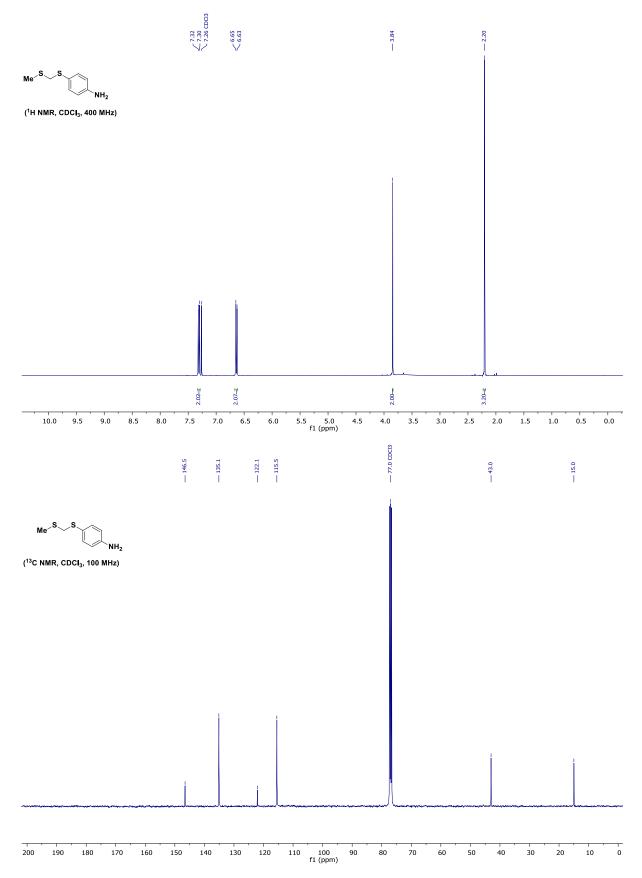
2-{[(Phenylsulfanyl)methyl]sulfanyl}-1,3-benzoxazole (15)

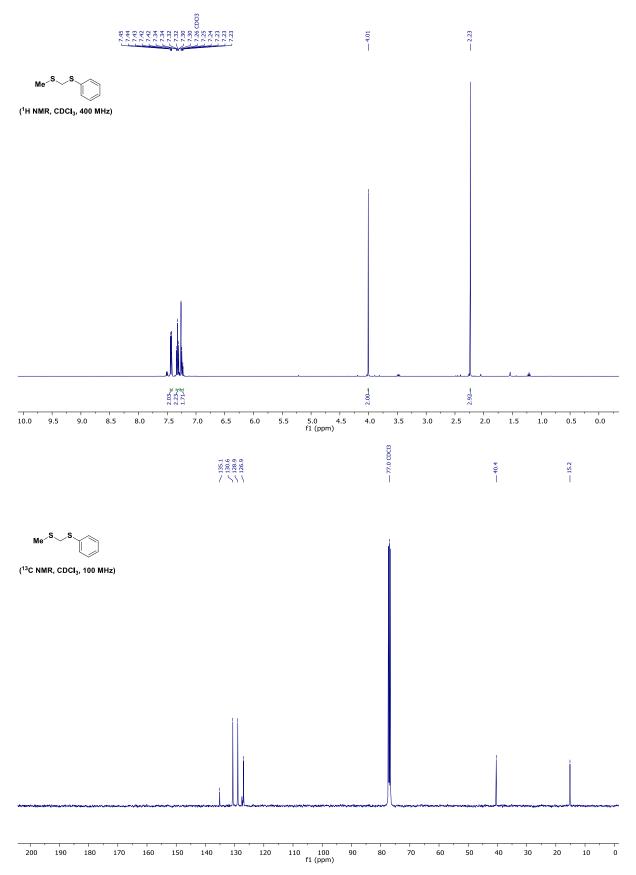

7.25 7.55

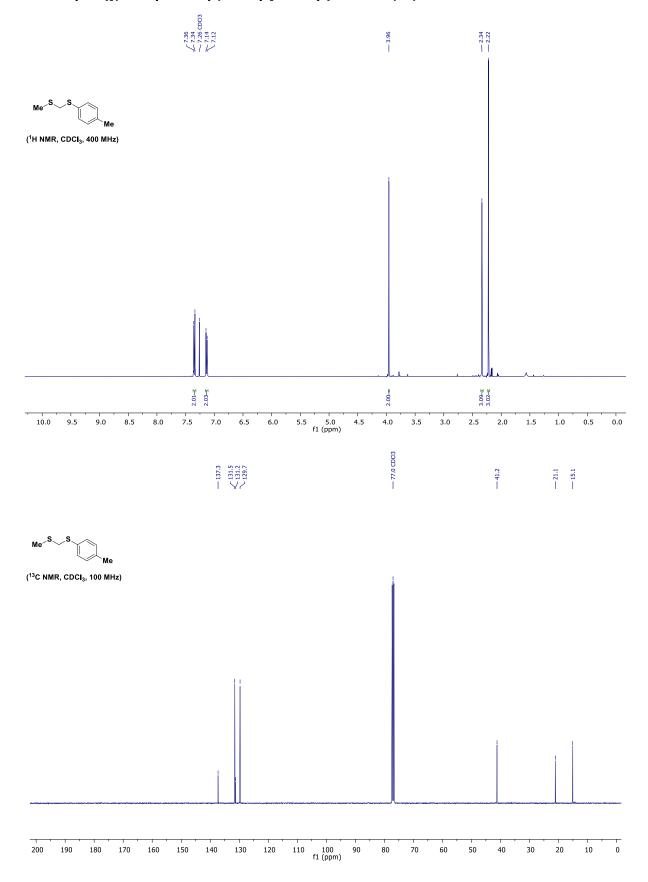

1-Bromo-4-{[(methylsulfanyl)methyl]sulfanyl}benzene (16)

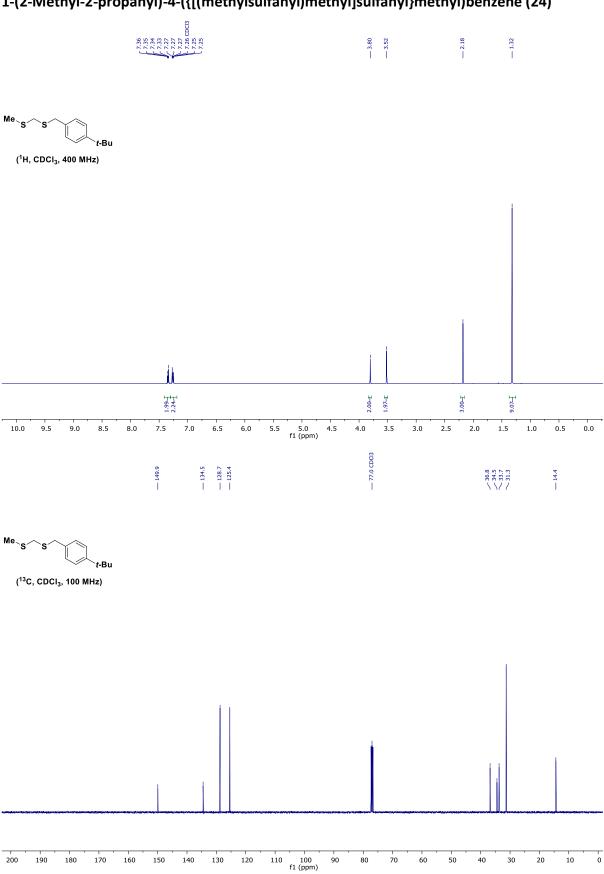

1-Chloro-4-{[(methylsulfanyl)methyl]sulfanyl}benzene (17)


1,3-Dichloro-2-{[(methylsulfanyl)methyl]sulfanyl}benzene (18)

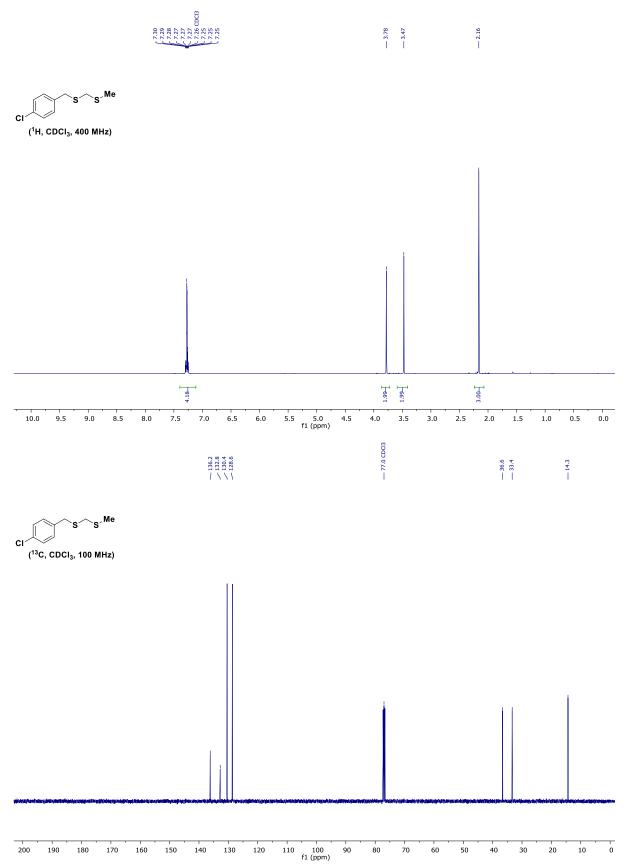

1-Fluoro-3-{[(methylsulfanyl)methyl]sulfanyl}benzene (19)

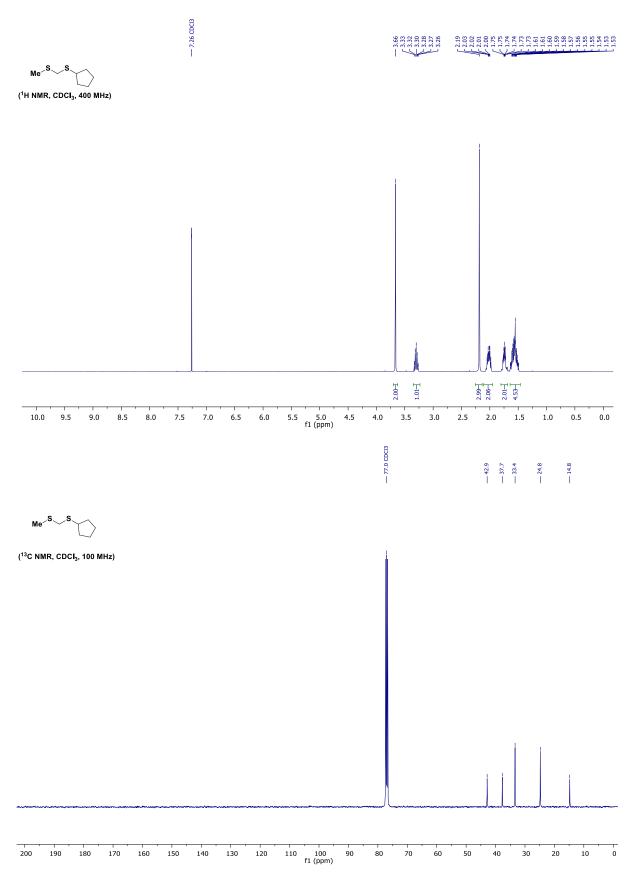

1-{[(Methylsulfanyl)methyl]sulfanyl}-4-nitrobenene (20)


4-{[(Methylsulfanyl)methyl]sulfanyl}aniline (21)

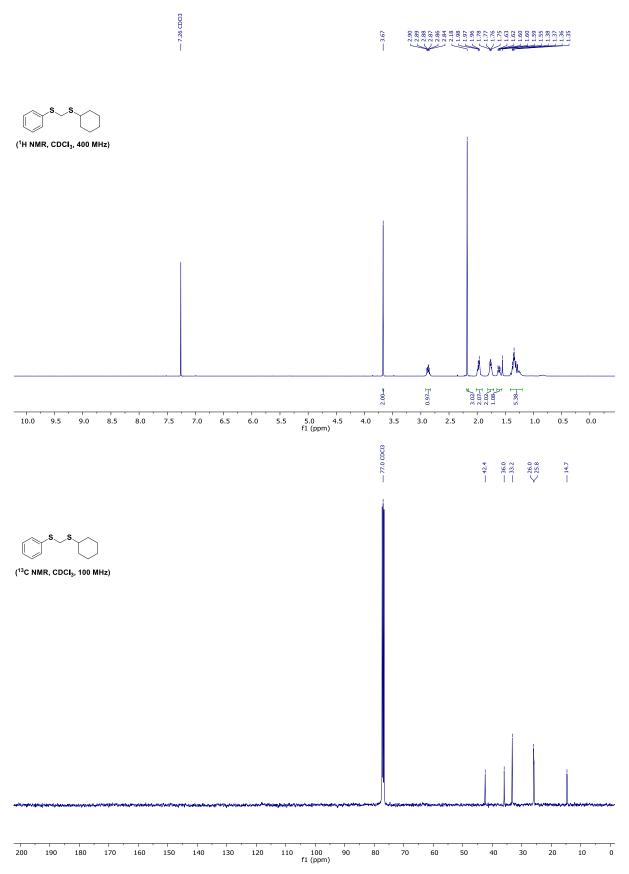


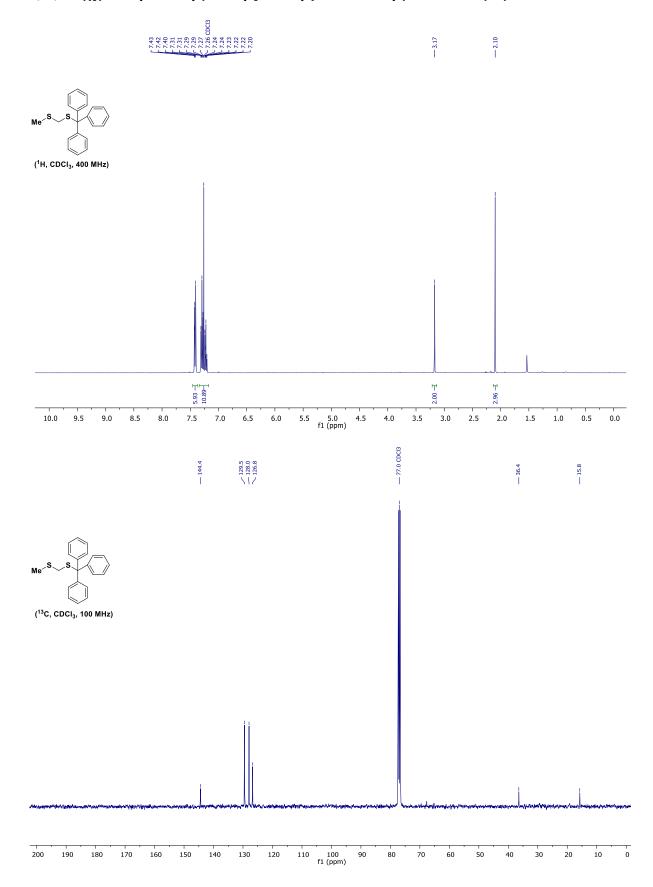
{[(Methylsulfanyl)methyl]sulfanyl}benzene (22)


1-Methyl-4-{[(methylsulfanyl)methyl]sulfanyl}benzene (23)

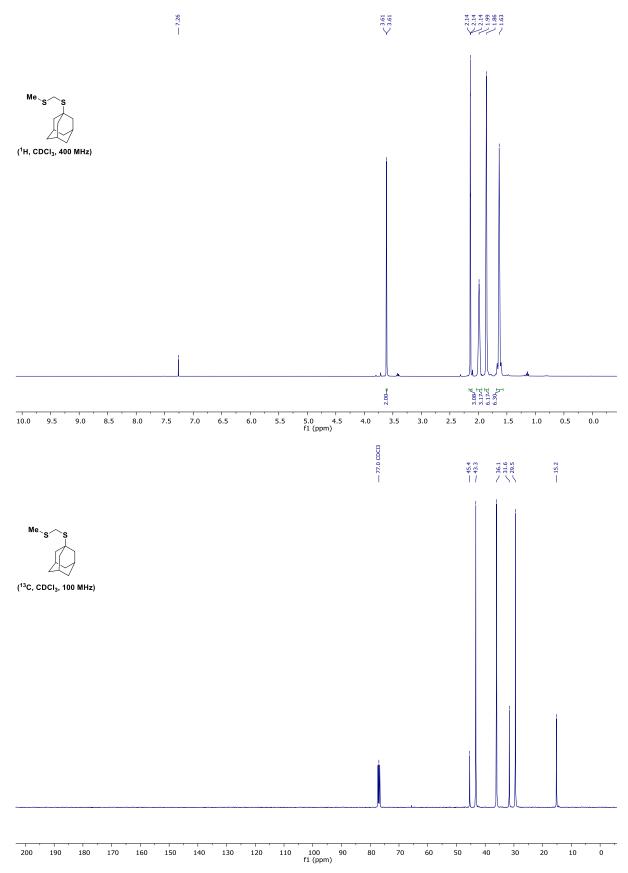


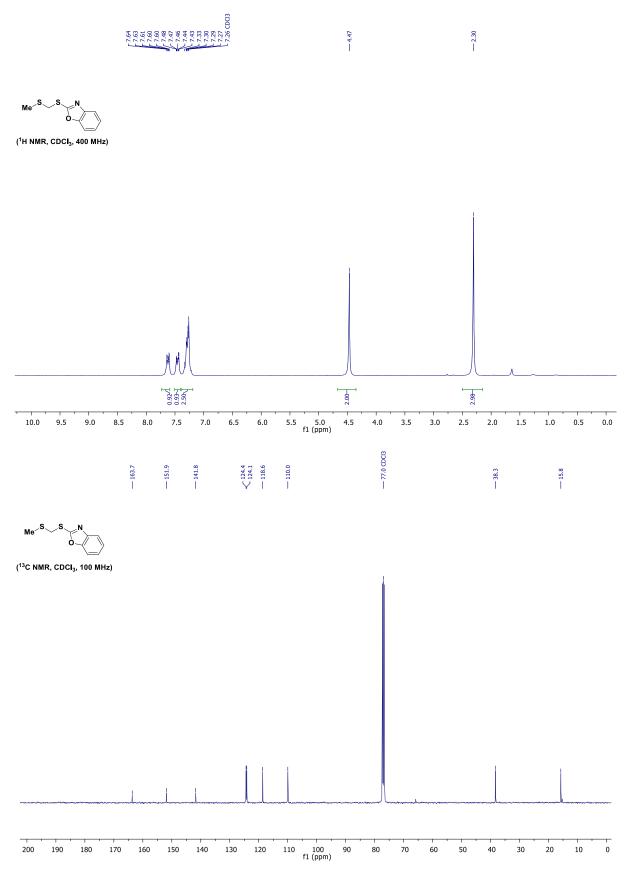
1-(2-Methyl-2-propanyl)-4-({[(methylsulfanyl)methyl]sulfanyl}methyl)benzene (24)


1-Chloro-4-({[(methylsulfanyl)methyl]sulfanyl}methyl)benzene (25)

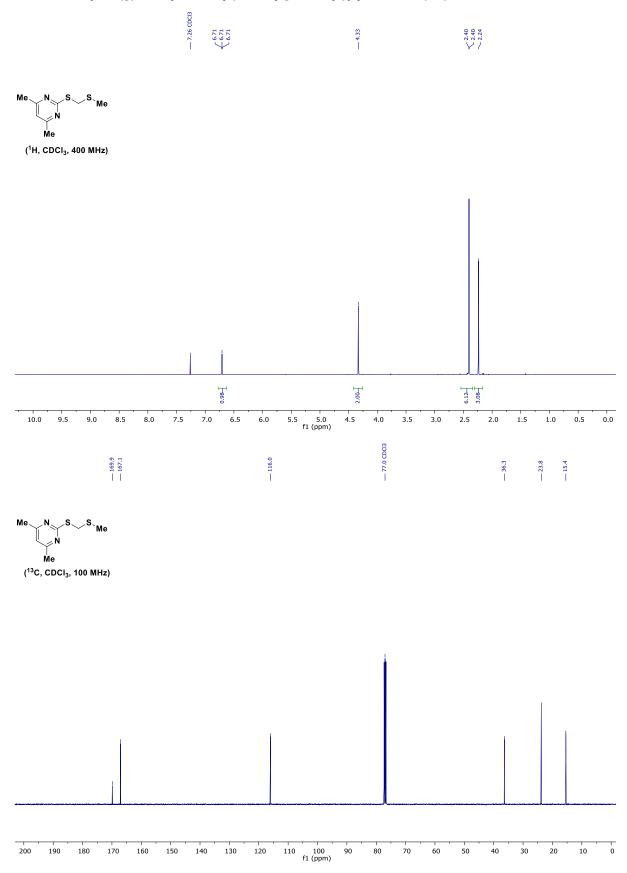


{[(Methylsulfanyl)methyl]sulfanyl}cyclopentane (26)


{[(Methylsulfanyl)methyl]sulfanyl}cyclohexane (27)



1,1´,1´´-({[(Methylsulfanyl)methyl]sulfanyl}methanetriyl)tribenzene (28)

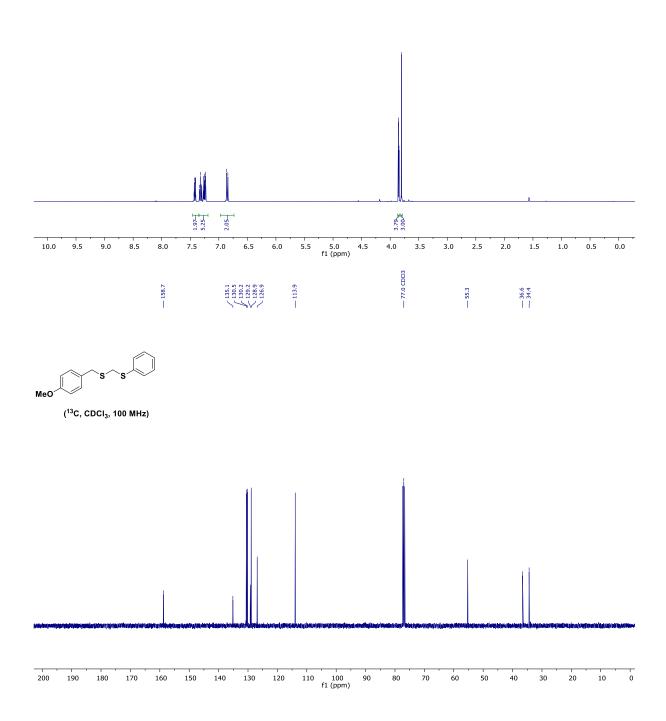

1-{[(Methylsulfanyl)methyl]sulfanyl}adamantine (29)

2-{[(Methylsulfanyl)methyl]sulfanyl}-1,3-benzoxazole (30)

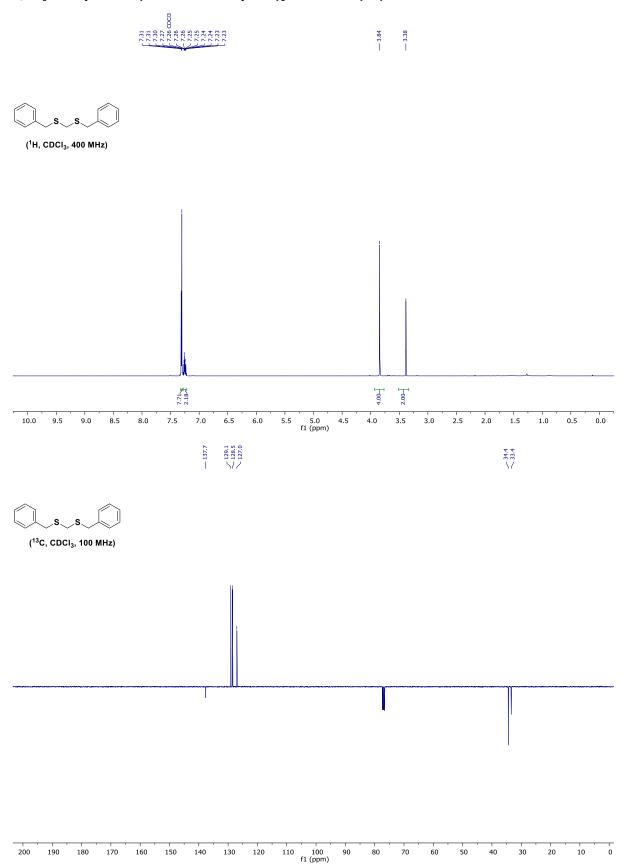
4,6-Dimethyl-2-{[(methylsulfanyl)methyl]sulfanyl}pyrimidine (31)

58

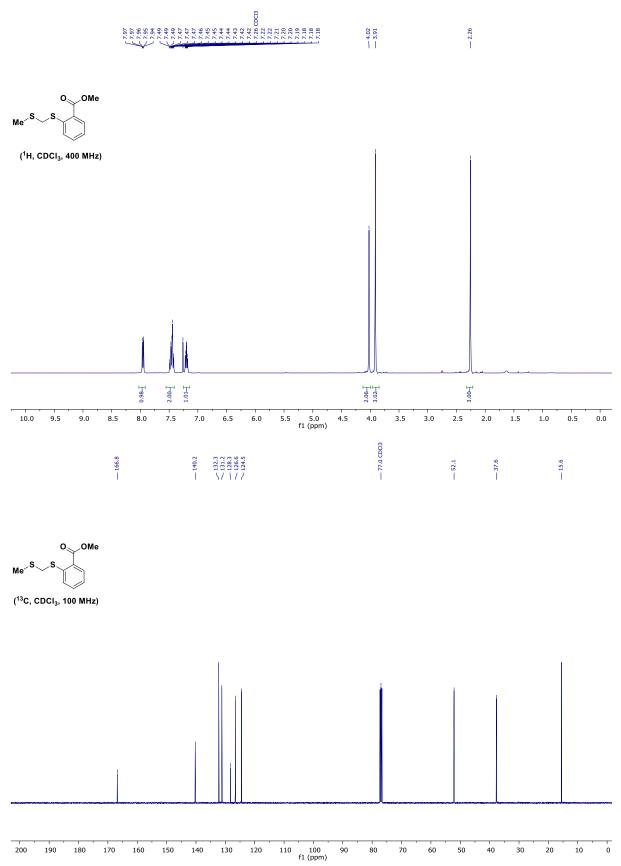
2-{[(Methylsulfanyl)methyl]sulfanyl}-5-{[3-(trifluoromethyl)benzyl]sulfanyl}-1,3,4-thiadiazole (32)

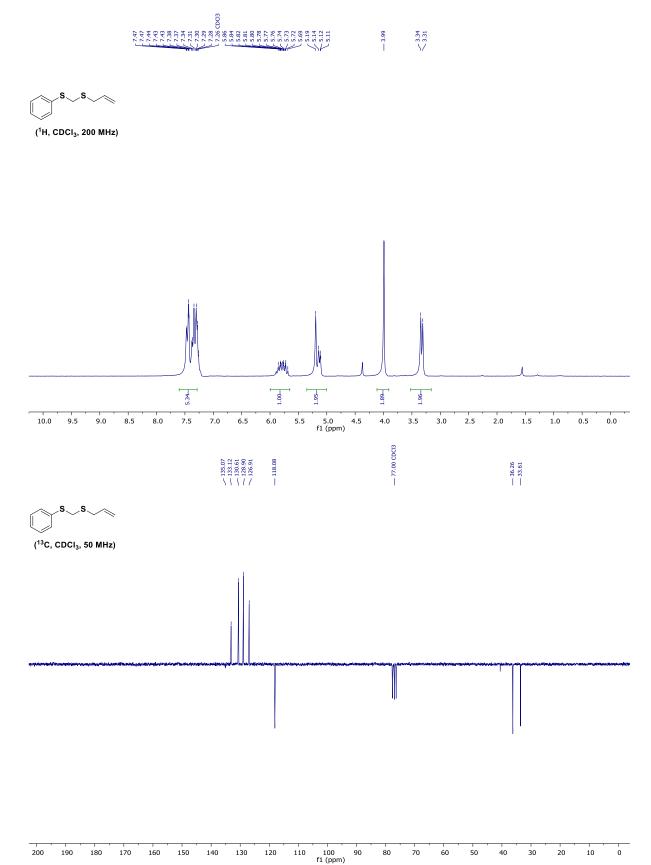


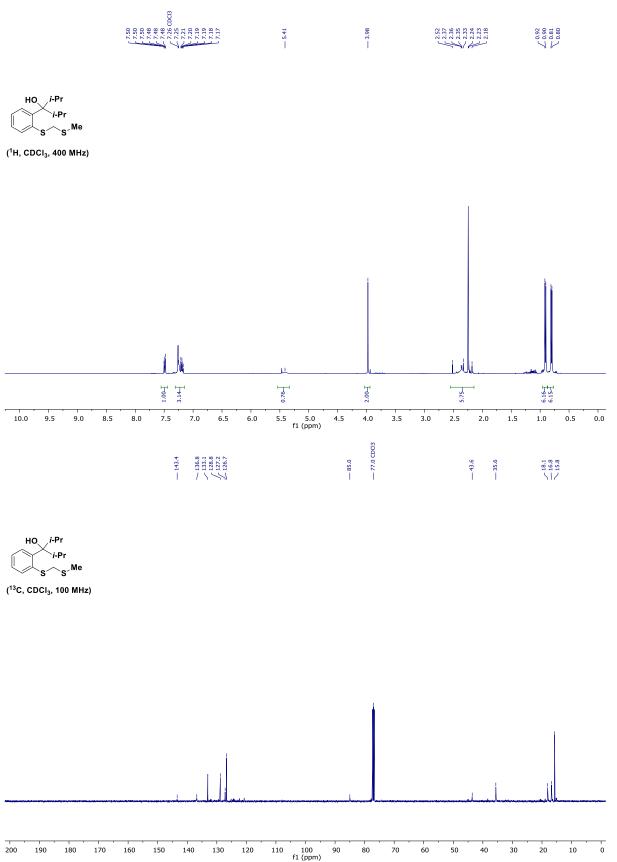
1-Methoxy-4-({[(phenylsulfanyl)methyl]sulfanyl}methyl)benzene (33)



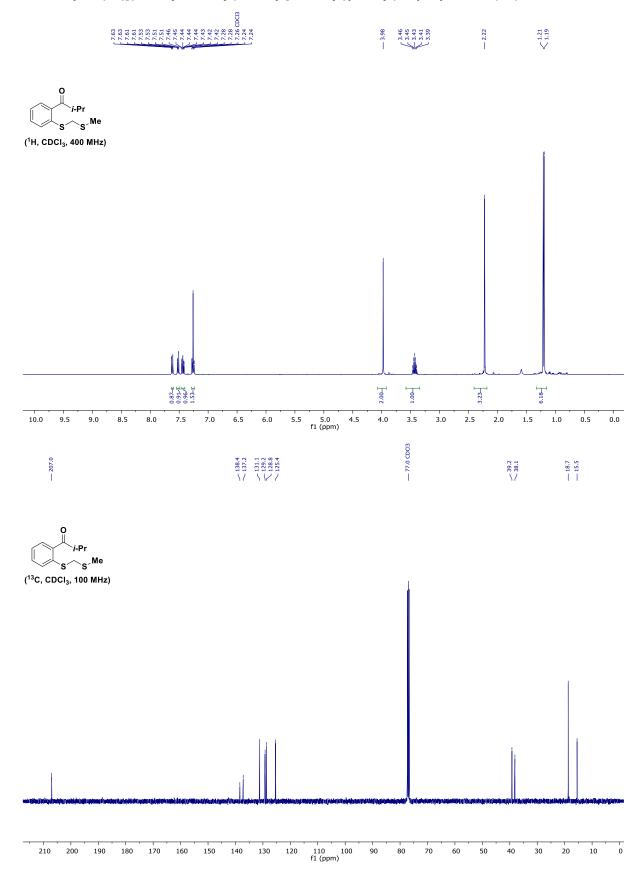
MeO


(¹H, CDCI₃, 400 MHz)

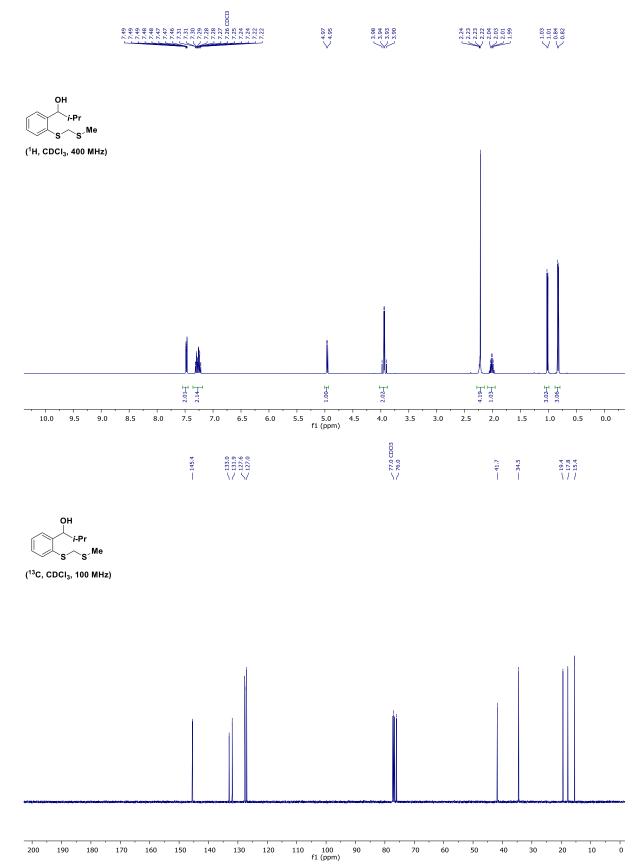

1,1'-[Methylenebis(sulfanedimethylene)]dibenzene (34)



Methyl 2-{[(methylsulfanyl)methyl]sulfanyl}benzoate (35)



({[(Prop-2-en-1-yl)sulfanyl]methyl}sulfanyl)benzene (36)



2,4-Dimethyl-3-(2-{[(methylsulfanyl)methyl]sulfanyl}phenyl)-3-pentanol (37)

2-Methyl-1-(2-{[(methylsulfanyl)methyl]sulfanyl}phenyl)-1-propanone (38)

2-Methyl-1-(2-{[(methylsulfanyl)methyl]sulfanyl}phenyl)-1-propanol (39)